Oncogene-induced reactive oxygen species (ROS) have been proposed to be signaling molecules that mediate proliferative cues. However, ROS may also cause DNA damage and proliferative arrest. How these apparently opposite roles can be reconciled, especially in the context of oncogene-induced cellular senescence, which is associated both with aberrant mitogenic signaling and DNA damage response (DDR)-mediated arrest, is unclear. Here, we show that ROS are indeed mitogenic signaling molecules that fuel oncogene-driven aberrant cell proliferation. However, by their very same ability to mediate cell hyperproliferation, ROS eventually cause DDR activation. We also show that oncogenic Ras-induced ROS are produced in a Rac1 and NADPH oxidase (Nox4)-dependent manner. In addition, we show that Ras-induced ROS can be detected and modulated in a living transparent animal: the zebrafish. Finally, in cancer we show that Nox4 is increased in both human tumors and a mouse model of pancreatic cancer and specific Nox4 small-molecule inhibitors act synergistically with existing chemotherapic agents.
Work carried out primarily in the laboratory of Fabrizio d’Adda di Fagagna unveils the mitogenic properties of Ras-induced reactive oxygen species (ROS) and their relationship with the DNA damage response. Combined data from studies of cultured cells, zebrafish models, and clinical material consistently support a role of the RAS-RAC1-NOX4 axis in ROS induction, hyperproliferation, and senescence.
During this last decade, the development of prosenescence therapies has become an attractive strategy as cellular senescence acts as a barrier against tumour progression. In this context, CDK4/6 inhibitors induce senescence and reduce tumour growth in breast cancer patients. However, even though cancer cells are arrested after CDK4/6 inhibitor treatment, genes regulating senescence in this context are still unknown limiting their antitumour activity. Here, using a functional genome-wide CRISPR/Cas9 genetic screen we found several genes that participate in the proliferation arrest induced by CDK4/6 inhibitors. We find that downregulation of the coagulation factor IX (F9) using sgRNA and shRNA prevents the cell cycle arrest and senescent-like phenotype induced in MCF7 breast tumour cells upon Palbociclib treatment. These results were confirmed using another breast cancer cell line, T47D, and with an alternative CDK4/6 inhibitor, Abemaciclib, and further tested in a panel of 22 cancer cells. While F9 knockout prevents the induction of senescence, treatment with a recombinant F9 protein was sufficient to induce a cell cycle arrest and senescence-like state in MCF7 tumour cells. Besides, endogenous F9 is upregulated in different human primary cells cultures undergoing senescence. Importantly, bioinformatics analysis of cancer datasets suggest a role for F9 in human tumours. Altogether, these data collectively propose key genes involved in CDK4/6 inhibitor response that will be useful to design new therapeutic strategies in personalised medicine in order to increase their efficiency, stratify patients and avoid drug resistance.
Oncogene-induced senescence (OIS) is a potent barrier for the transformation of pre-cancerous cells. The molecular pathways involved in the execution of OIS are still incompletely understood, but they include chronic DNA damage signaling and post-translational modifications of key factors. Here, we show that OIS-associated transcriptional downregulation of deubiquitinating enzyme USP1 triggers and maintains a DNA damage checkpoint response with atypical DNA lesions that is dependent on functional FANCD2-FI-ATR-CHK1-p53-CDKN1A signaling. We find that a reduced USP1 level causes aberrant aggregation of its target FANCD2 concomitant with replication stress, accumulation, and colocalization of γ-H2Ax and p53-binding protein 1 (53BP1) in large and unusual sparse DNA damage foci and an increased number of polyploid cells and cells arrested in G2/M, as well as a sensitization of senescence-bypassing cells to DNA interstrand crosslinking-mediated cell death. Our study identifies USP1 as a key senescence regulator controlling genomic integrity and a promising target for anti-cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.