The thermal cracking (TC) module (TCMODEL) of the recently developed Guide for Mechanistic–Empirical Design of New and Rehabilitated Pavement Structures (referred to as MEPDG) is used to predict thermally induced cracking in asphalt pavements over their service lives. The primary input to this model is the asphalt mixture creep compliance. The current standard test for determination of the creep compliance of asphalt mixtures is the indirect tensile test (IDT). This paper investigates the feasibility of using the bending beam rheometer (BBR) device to determine the low-temperature creep compliance of thin asphalt mixture beams (127 × 12.7 × 6.35 mm). The BBR device was used to evaluate 20 different asphalt mixtures, and the results were compared with the standard IDT results. Direct comparison of the BBR and the IDT results indicated that both methods produce slightly different creep compliance curves and that the relative ratio between the BBR and the IDT results varies with time and temperature. A simple phenomenological relation that gives good predictions of the IDT results on the basis of BBR creep compliance is proposed. The measured and predicted creep compliance curves were input into the MEPDG TC module, and the predicted depth of cracks and the amount of cracking were compared. The comparison showed that predicted creep compliance determined on the basis of the BBR results can be successfully used to estimate thermal cracking by use of the TCMODEL. It was concluded that the BBR device can be used for the practical and surrogate estimation of the creep compliance of mixtures. The proposed equation relating BBR and IDT creep compliances should be further validated with different types of mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.