Sentiment analysis is a field of study that analyzes one's opinions, sentiments, evaluations, attitudes and emotions that are conveyed in written text. There are several factors that cause low accuracy results from sentiment analysis. These factors such as less optimal stemming process, word negation process that does not produce maximum results, writing errors in the dataset, and others. These problems can be overcome by optimizing the process of normalizing words, negation, stemming, and adding methods of semantic expansion. The purpose of adding the Semantic Expansion method and improvement in the process is to increase the accuracy value of the Sentiment Analysis process. This study aims to create a sentiment analysis model from public comments on a public figure (Ridwan Kamil) using the Naïve Bayes Classifier algorithm. Based on the test results in the sentiment analysis model using the Naïve Bayes Classifier method with the addition of the semantic expansion method it is proven that it can improve accuracy. The accuracy obtained using the semantic expansion method is 72%. While the value of accuracy without semantic expansion is 70%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.