Monoculture farming is pervasive in industrial oil palm agriculture, including those RSPO plantations certified as sustainably managed. This farming practice does not promote the maintenance of farmland biodiversity. However, little scientific attention has been given to polyculture farming in oil palm production landscapes. Polyculture farming is likely to increase the floristic diversity and stand structural complexity that underpins biodiversity. Mist nets were used to sample birds at 120 smallholdings in Peninsular Malaysia. At each site, 12 vegetation structure characteristics were measured. We compared bird species richness, abundance, and composition between monoculture and polyculture smallholdings and used predictive models to examine the effects of habitat quality on avian biodiversity. Bird species richness was significantly greater in polyculture than that of monoculture smallholdings. The number of fallen and standing, dead oil palms were also important positive predictors of species richness. Bird abundance was also strongly increased by standing and dead oil palms and decreased with oil palm stand height. Our results indicate that polyculture farming can improve bird species richness in oil palm production landscapes. In addition, key habitat variables that are closely associated with farming practices, such as the removal of dead trees, should and can be managed by oil palm growers in order to promote biodiversity. To increase the sustainability of oil palm agriculture, it is imperative that stakeholders modify the way oil palms are currently planted and managed. Our findings can guide policy makers and certification bodies to promote oil palm production landscapes that will function more sustainably and increase existing biodiversity of oil palm landscapes.
The expansion of commercial oil palm crop has modified much of the natural landscape, subsequently leading to biodiversity loss in Southeast Asia. Aside from large-scale oil palm monoculture plantations, self-managed oil palm smallholdings are also becoming common in palm oil producing countries, but less is known about how management of the smallholdings affects faunal biodiversity. We argue that it is critically important to understand the role of habitat complexity at the local and landscape scales for maintaining faunal biodiversity in oil palm smallholdings. We used passive sampling methods to survey understory birds, fruit bats, and butterflies in oil palm smallholdings on the west coast of Peninsular Malaysia. We quantified the diversity in each taxon and measured in situ habitat quality and landscape metrics. We found that oil palm smallholdings located near rice fields supported fewer bird species. Proximity to roads can give rise to bird and fruit bat richness. Bird and fruit bat richness declined at sites with high crop density. Fruit bat richness declined, but butterfly richness increased, with the height of oil palm stands. Butterfly richness declined with distance from riparian habitats. Decreased coverage and height of ground vegetation also negatively affected butterfly species richness. We also found that the number of farm houses is positively related to bird, fruit bat, and butterfly species richness. Of the three taxa, only butterfly richness was positively influenced by crop diversity. We found that habitat complexity enables smallholdings to support a diverse community of birds and butterflies, but not fruit bats. These findings imply that oil palm smallholdings can be managed in a conservation agricultural matrix, as the smallholdings were able to maintain farmland biodiversity.
A herpetofaunal inventory was conducted on Bidong Island, Terengganu, Peninsular Malaysia. It incorporates data from a recent herpetological survey conducted from 1 to 3 April 2019 with reptile records from previous publications. Specimens were collected with drift-fenced pitfall traps and taxa were recorded with visual encounter surveys (VES). In total, 18 species of reptiles and amphibians were recorded, including three species of frogs, 12 species of lizards, and three species of snakes. Six species from the present survey are new records for the island.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.