This study investigated the effects of tuna hydrolysate (TH) inclusion in fishmeal (FM) based diets on the growth performance, innate immune response, intestinal health and resistance to Streptococcus iniae infection in juvenile barramundi, Lates calcarifer. Five isonitrogenous and isoenergetic experimental diets were prepared with TH, replacing FM at levels of 0% (control) 5%, 10%, 15% and 20%, and fed fish to apparent satiation three times daily for 8 weeks. The results showed that fish fed diets containing 5% and 10% TH had significantly higher final body weight and specific growth rate than the control. A significant reduction in blood glucose was found in fish fed 10%, 15% and 20% TH compared to those in the control whereas none of the other measured blood and serum indices were influenced by TH inclusion. Histological observation revealed a significant enhancement in goblet cell numbers in distal intestine of fish fed 5 to 10% TH in the diet. Moreover, fish fed 10% TH exhibited the highest resistance against Streptococcus iniae infection during a bacterial challenge trial. These findings therefore demonstrate that the replacement of 5 to 10% FM with TH improves growth, immune response, intestinal health and disease resistance in juvenile barramundi.
In intensive farming systems, fish are held at high densities, which may increase stress, leading to susceptibility to diseases that result in economic losses. Therefore, effective feeding practices incorporating health-promoting compounds such as proteins, hydrolysates and bioactive peptides that can stimulate the defence mechanisms of fish and achieve better growth are some of the priorities for sustainable aquaculture development. Globally, the fish processing industries generate and discard a large volume of waste every year, estimated at up to 60% of the harvested biomass. This waste can be converted to value-added products such as fish protein hydrolysate (FPH) with the addition of various proteolytic enzymes. FPH from fish processing waste including skin, heads, muscle, viscera, liver and bones is a good source of protein, amino acids, peptides and antioxidants and has been found to possess desirable functional and bioactive peptides. A moderate inclusion of FPH in aquafeeds has the potential to improve growth, feed utilization, immune functions and disease resistance of fish. Production of FPH, targeted to more precise molecular weight ranges, has superior functionalities that are in high demand. With interest in FPH as an aquafeed supplement, this review aimed to summarize the source, production processes and functional properties of FPH and the reported impact of FPH in aquafeed supplement on fish growth, survival, feed utilization, immune response and disease resistance. Possible limitations of using FPH and future research potential as an opportunity for the use of processing fish waste are also discussed.
This study investigated the effects of replacement of fishmeal (FM) with poultry by-product (PBM) protein, supplemented with black soldier fly, Hermetia illucens (HI) larvae on growth, histomormhology, immunity and resistance to Vibrio harveyi in juvenile barramundi. Two hundred and twenty five barramundi averaging 3.51 ± 0.03 g were randomly allocated into three groups and fed isonitrogenous and isocalorific diets containing different levels of PBM supplemented with HI as follows: Control (FM based diet), 45PBM + HI (45% PBM supplemented with 10% HI), and 90PBM + HI (90% PBM supplemented with 10% HI) for 6 weeks. Results showed that dietary inclusion of 45PBM + HI significantly improved the growth performance than control whereas growth inhibition occurred in the 90PBM + HI. The 45PBM + HI groups demonstrated significant increases in histometric measurements (villus and enterocyte width, and microvilli height) and acidic mucins. The impaired growth in 90PBM + HI groups was further associated with multifocal necrosis in the liver, an upregulation of the stress related genes (HSP70 and HSP90) and increase in the levels of liver enzymes. When 45PBM + HI was fed, survival against V. harveyi increased significantly and also an increase in serum immunity and immune-related genes in the head kidney was observed after infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.