Opinion Mining from user reviews is an emerging field. Sentiment Analysis of Natural Language text helps us in finding the opinion of the customers. These reviews can be in any language e.g. English, Chinese, Arabic, Japanese, Urdu, and Hindi. This research presents a model to classify the polarity of the review(s) in Roman Urdu text (reviews). For the purpose, raw data was scraped from the reviews of 20 songs from Indo-Pak Music Industry. In this research a new dataset of 24000 reviews of Roman Urdu text is created. Nine Machine Learning algorithms-Naïve Bayes, Support Vector Machine, Logistic Regression, K-Nearest Neighbors, Artificial Neural Networks, Convolutional Neural Network, Recurrent Neural Networks, ID3 and Gradient Boost Tree, are attempted. Logistic Regression outperformed the rest, based on testing and cross validation accuracies that are 92.25% and 91.47% respectively.
In machine learning, sentiment analysis is a technique to find and analyze the sentiments hidden in the text. For sentiment analysis, annotated data is a basic requirement. Generally, this data is manually annotated. Manual annotation is time consuming, costly and laborious process. To overcome these resource constraints this research has proposed a fully automated annotation technique for aspect level sentiment analysis. Dataset is created from the reviews of ten most popular songs on YouTube. Reviews of five aspects-voice, video, music, lyrics and song, are extracted. An N-Gram based technique is proposed. Complete dataset consists of 369436 reviews that took 173.53 s to annotate using the proposed technique while this dataset might have taken approximately 2.07 million seconds (575 h) if it was annotated manually. For the validation of the proposed technique, a sub-dataset-Voice, is annotated manually as well as with the proposed technique. Cohen's Kappa statistics is used to evaluate the degree of agreement between the two annotations. The high Kappa value (i.e., 0.9571%) shows the high level of agreement between the two. This validates that the quality of annotation of the proposed technique is as good as manual annotation even with far less computational cost. This research also contributes in consolidating the guidelines for the manual annotation process.
Artificial intelligence- (AI-) empowered machines are devised to mimic human actions. In the automotive industry, AI plays a significant role in the development of vehicular technology. AI joins hands with the field of mechatronics to assist in the accurate execution of the vehicle functionalities. Autonomous vehicles get the scene information by using onboard sensors such as laser, radar, lidar, Global Positioning System (GPS), and vehicular communication networks. The data obtained is then used for various path planning and control techniques to make the vehicles capable of autonomously driving in complex environments. Autonomous vehicles use very up-to-date AI algorithms to localize themselves in known and unknown environments. AI algorithms are also exploited for perception, path planning, and motion control. A concise review of the state-of-the-art techniques to improve the performance of autonomous vehicles is presented.
With the advancements in internet facilities, people are more inclined towards the use of online services. The service providers shelve their items for e-users. These users post their feedbacks, reviews, ratings, etc. after the use of the item. The enormous increase in these reviews has raised the need for an automated system to analyze these reviews to rate these items. Sentiment Analysis (SA) is a technique that performs such decision analysis. This research targets the ranking and rating through sentiment analysis of these reviews, on different aspects. As a case study, Songs are opted to design and test the decision model. Different aspects of songs namely music, lyrics, song, voice and video are picked. For the reason, reviews of 20 songs are scraped from YouTube, pre-processed and formed a dataset. Different machine learning algorithms-Naïve Bayes (NB), Gradient Boost Tree, Logistic Regression LR, K-Nearest Neighbors (KNN) and Artificial Neural Network (ANN) are applied. ANN performed the best with 74.99% accuracy. Results are validated using K-Fold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.