Background Bone scintigraphy is an appropriate tool in the management of cancers for the detection of bone metastasis. Technetium 99 m-methylene diphosphonate (99mTc-MDP) is commonly used as a bone-seeking agent. The bones take up 99mTc-MDP through a process called chemisorption, which is more evident in areas of increased osteoblastic activities. Nevertheless, extra-osseous 99mTc-MDP uptake is an infrequent occurrence, which warrants a thorough clinical assessment to evaluate such findings. An example of extraosseous uptake discovery is rhabdomyolysis, which requires prompt recognition and immediate management. Rhabdomyolysis secondary to an adverse reaction towards iodinated contrast material is a rare condition that warrants a high index of clinical suspicion. Case presentation We present a case of a 75-year-old gentleman with underlying benign prostatic hypertrophy, and chronic kidney disease who had undergone a coronary angiography examination and intervention for ischemic heart disease. Pre-scheduled bone scintigraphy with 99mTc-MDP for the work-up of raised serum prostate-specific antigen (PSA) was performed 2 weeks post coronary angiography examination. Whole-body bone scan with single-photon emission computed tomography/computed tomography (SPECT/CT) images showed an unexpected finding of extensive extra-osseous uptake in the muscles and soft tissues. Additional investigations confirmed the diagnosis of rhabdomyolysis. Nevertheless, despite the prompt recognition, administration of treatment and supportive care, the patient succumbed to life-threatening complications. Conclusion This case highlights the importance of recognising and identifying the pattern of extra-osseous uptake on bone scintigraphy imaging to ensure early intervention of severe and life-threatening conditions such as rhabdomyolysis.
Designing and implementing various radionuclide production methods guarantees a sustainable supply, which is important for medical use. The use of medical cyclotrons for radiometal production can increase the availability of gallium-68 (68Ga) radiopharmaceuticals. Although generators have greatly influenced the demand for 68Ga radiopharmaceuticals, the use of medical cyclotrons is currently being explored. The resulting 68Ga production is several times higher than obtained from a generator. Moreover, the use of solid targets yields end of purification and end of synthesis (EOS) of up to 194 GBq and 72 GBq, respectively. Furthermore, experiments employing liquid targets have provided promising results, with an EOS of 3 GBq for [68Ga]Ga-PSMA-11. However, some processes can be further optimized, specifically purification, to achieve high 68Ga recovery and apparent molar activity. In the future, 68Ga will probably remain one of the most in-demand radionuclides; however, careful consideration is needed regarding how to reduce the production costs. Thus, this review aimed to discuss the production of 68Ga radiopharmaceuticals using Advanced Cyclotron Systems, Inc. (ACSI, Richmond, BC, Canada) Richmond, Canada and GE Healthcare, Wisconsin, USA cyclotrons, its related factors, and regulatory concerns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.