INTRODUCTION: Coronavirus disease (COVID-19) is a novel pandemic that affects every other country in the world. Various countries have adopted control measures involving restriction of movement. Several studies have used mathematical modelling to predict the dynamic of this pandemic. Forecasting techniques can be used to predict the incidence cases for the short term. The study aims to forecast the COVID-19 incidence using the Auto Regressive Integrated Moving Average (ARIMA) method. MATERIALS AND METHODS: Using publicly available data, we performed a forecast of Malaysia COVID-19 new cases using Expert Modeler Method in SPSS and ARIMA model in R to predict COVID-19 cases in Malaysia. We compare 3 different time frames based on different Movement Control Order (MCO) period. We compare the model fit and prediction across models. RESULTS: All models show static cases for each MCO 7-day prediction. For prediction until 12 May, the third MCO time frame shows the best model fit for both techniques. Both software shows a stationary trend of cases of below 100. CONCLUSION: These MCO models have shown to stabilize the rate of new cases. Further sub analysis and quality of data is needed to improve the accuracy of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.