The increasing demand of routing in the field of communication is the most important subject in ad hoc networks now a days. Flying Ad Hoc Network (FANET) is one of the emerging areas that evolved from Mobile Ad Hoc Networks. Selecting the best optimal path in any network is a real challenge for a routing protocol. Because the network performance like throughput, Quality of Service (QoS), user experience, response time and other key parameters depend upon the efficiency of the algorithm running inside the routing protocol. The complexity and diversity of the problem is augmented due to dynamic spatial and temporal mobility of FANET nodes. Due to these challenges the performance and efficiency of the routing protocol becomes very critical. This paper presents a novel routing protocol for FANET using modified AntHocNet. Ant colony optimization technique or metaheuristics in general has shown better dependability and performance as compared to other legacy best path selection techniques. Energy stabilizing parameter introduced in this study improves energy efficiency and overall network performance. Simulation results show that the proposed protocol is better than generic Ant Colony Optimization (ACO) and other traditional routing protocols utilized in FANET. INDEX TERMS FANET, routing, nature inspired algorithms, ACO.
Power scheduling of domestic appliances is a vital preference for bridging the gap between demand and generation of electricity in a microgrid. For a stable microgrid, an acceptable mechanism must reduce the peak to average ratio (PAR) of power demand with supplementary benefits for consumers as reduced electricity charges. Recent studies have focused on PAR and cost reduction for a small consumer population. Furthermore, researchers have mainly considered homogeneous consumer loads. This study focuses on residential power scheduling for electricity cost reduction for consumers and load profile PAR curtailment for a relatively large consumer population with non-homogeneous loads. A sample population of 1000 consumers from various classes of society is considered. The proposed dynamic clustered community home energy management system (DCCHEMS) allows the clustering of appliances based on time overlap criteria. Comparatively flatter power demand is attained by utilizing the clustered appliances in conjunction with particle swarm optimization under the influence of user-defined constraints. Modified inclined block rates with real-time electricity pricing strategies are deployed to minimize the electricity costs. DCCHEMS achieved higher efficiency rates in contrast to the traditional non-clustering and static clustering optimization schemes. An improvement of 21% in peak to average ratio, 4% in cost reduction, and 19% in variance to mean ratio is obtained.
Unmanned aerial vehicle (UAV) has recently gained significant attention due to their efficient structures, cost-effectiveness, easy availability, and tendency to form an ad hoc wireless mobile network. IoT-enabled UAV is a new research domain that uses location tracking with the advancement of aerial technology. In this context, the importance of 3D aerial networks is attracting a lot of attention recently. It has various applications related to information processing, communication, and location-based services. Location identification of wireless nodes is a challenging job and of extreme importance. In this study, we introduced a novel technique for finding indoor and open-air three-dimensional (3D) areas of nodes by measuring the signal strength. The mathematical formulation is based on a path loss model and decision tree machine learning classifier. We constructed 2D and 3D models to gather more accurate information on the nodes. Simulation findings demonstrate that the proposed machine learning-based model excels in nodes location estimation, the actual and estimated distance of different nodes, and calculation of received signal strength in aerial ad hoc networks. In addition, the decision tree constructs an offline phase control in the flying vehicle’s location to enhance the time complexity along with experimental accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.