IntroductionThe incidence of vitamin D deficiency in critically ill patients has been reported to range from as low as 17% to as high as 79%. Data regarding the relationship between 25-hydroxyvitamin D levels and outcomes in the medical intensive care unit are sparse. The goal of the study was to evaluate the prevalence of 25-hydroxyvitamin D deficiency in the medical intensive care unit and its relationship with outcomes.MethodThis was a retrospective study in a medical intensive care unit (MICU) at an inner city community hospital. The study period was between October 2009 and February 2010.ResultsOf the 932 patients admitted during the study period, 25-hydroxyvitamin D vitamin D (25(OH)D) levels were available in 523 (53%); 86 of them were excluded from the study due to readmission to the intensive care unit. Deficiency was defined as 0 to 19.9 ng/dL 25(OH)D levels, insufficiency as 20 to 29.9 ng/dL, and normal levels as ≥30 ng/dL. Of the 437 patients studied, 25(OH)D deficiency was identified in 340 (77.8%), insufficiency in 74 (16.9%), and normal levels in 23 (5.3%) patients. Patients with 25(OH)D deficiency/insufficiency were younger (P = 0.015), were male (P = 0.001), and had kidney disease (P = 0.017) and lower total serum calcium levels (P = 0.003). Hospital mortality was higher in patients with 25(OH)D deficiency (P = 0.01). No differences in ventilator days or length of stay in the MICU were evident among the three groups. Analysis by multiple logistic regression demonstrated that acute physiology and chronic health evaluation (APACHE) IV score ((odds ratio (OR) 1.036; 95% confidence interval (CI) 1.024-1.048, P < 0.0001), ventilator requirement (OR 7.7; 95% CI 4.3-13.98, P < 0.0001), 25(OH) D levels(OR 0.942; 95% CI 0.942-0.904, P < 0.0005) and 25(OH) D deficiency (OR 8.7; 95% CI 1.03-72.8, P < 0.0469) showed statistical significance. There was no association between 25(OH)]D insufficiency and hospital mortality. The mean 25(OH)D level of survivors (27.9 ± 9.7 ng/dL) was higher than for non-survivors (9.7 ± 4.7 ng/dL; P < 0.0001).ConclusionsThe study results demonstrate an association between 25(OH)D deficiency and hospital mortality in MICU patients. A randomized prospective study to evaluate the effect of vitamin D replacement therapy on mortality is warranted.
Infection with SARS-CoV-2 (COVID-19) can cause prothrombotic complications. We aim to study the frequency of thrombotic complications and impact of anticoagulation on outcomes in hospitalized patients. We conducted a retrospective chart review of 921 consecutive patients admitted to our hospital with COVID-19. Patients were divided into four groups depending on whether they were on anticoagulation prior to admission, started anticoagulation during the admission, received prophylactic anticoagulation, or did not receive any anticoagulation. At the time of analysis, 325 patients (35.3%) had died, while 544 patients (59%) had been discharged resulting in inpatient mortality of 37.3%. Male sex, age > 65 years, and high D-dimer at admission were associated with higher mortality. Sixteen patients (1.7%) had venous thromboembolism confirmed with imaging, 11 patients had a stroke, and 2 patients developed limb ischemia. Treatment with therapeutic anticoagulation was associated with improved inpatient mortality compared with prophylactic anticoagulation alone (63% vs 86.2%, p < 0.0001) in patients requiring mechanical ventilation. Other outcomes such as rates of liberation from mechanical ventilation and duration of mechanical ventilation were not significantly impacted by the type of anticoagulation. Electronic supplementary material The online version of this article (10.1007/s00277-020-04216-x) contains supplementary material, which is available to authorized users.
BackgroundB-type natriuretic peptide (BNP) and the N-terminal fragment of pro-BNP (NT-pro-BNP) are established biomarkers of heart failure. Increased levels of natriuretic peptide (NP) have been associated with poor outcomes in acute exacerbation of COPD (AECOPD); however, most studies did not address the conditions that can also increase NT-pro-BNP levels. We aimed to determine if NT-pro-BNP levels correlate with outcomes of AECOPD in patients without heart failure and other conditions that can affect NT-pro-BNP levels.MethodsWe conducted a retrospective study in patients hospitalized for AECOPD with available NT-pro-BNP levels and normal left ventricular ejection fraction. We compared patients with normal and elevated NT-pro-BNP levels and analyzed the clinical and outcome data.ResultsA total of 167 of 1,420 (11.7%) patients met the study criteria. A total of 77% of male patients and 53% of female patients had elevated NT-pro-BNP levels (P=0.0031). NT-pro-BNP levels were not associated with COPD severity and comorbid illnesses. Log-transformed NT-pro-BNP levels were positively associated with echocardiographically estimated right ventricular systolic pressure (r=0.3658; 95% confidence interval [CI]: 0.2060–0.5067; P<0.0001). Patients with elevated NT-pro-BNP levels were more likely to require intensive care (63% vs 43%; P=0.0207) and had a longer hospital length of stay (P=0.0052). There were no differences in the need for noninvasive positive pressure ventilation (P=0.1245) or mechanical ventilation (P=0.9824) or in regard to in-hospital mortality (P=0.5273).ConclusionPatients with AECOPD and elevated NT-pro-BNP levels had increased hospital length of stay and need for intensive care. Based on our study, serum NT-pro-BNP levels cannot be used as a biomarker for increased mortality or requirement for invasive or noninvasive ventilation in this group of patients.
IntroductionSmoking causes inflammation of the lung epithelium by releasing cytokines and impairing mucociliary clearance. Some studies have linked smoking with severity of illness of COVID-19 whereas others have found no such association.MethodsThis was a retrospective analysis of all adults hospitalised with COVID-19 from 9 March to 18 May 2020.Results1173 patients met the study criteria. 837 patients never smoked whereas 336 patients were either current smokers or past smoker and were grouped together in smokers group. Patients in smokers group were more likely to be male and had higher incidence of underlying chronic obstructive pulmonary disease (19% vs 6%, p<0.001), HIV infection (11% vs 5%,p<0.001), cancer (11% vs 6%, p=0.005), congestive heart failure (15% vs 8%, p<0.001), coronary artery disease (15% vs 9%, p=0.3), chronic kidney disease (11% vs 8%, p=0.037) and end-stage renal disease (10% vs 6%, p=0.009) compared with non-smokers. Outcome analysis showed that smokers were more likely to develop critical illness requiring mechanical ventilation (47% vs 37% p=0.005). Univariate Cox model for survival analysis by smoking status showed that among smokers only current smokers had higher risk of death compared with never smokers (HR 1.61, 95% CI 1.22 to 2.12, p<0.001). In the multivariate approach, Cox model for the survival, female sex, young age, low serum lactate dehydrogenase and systemic steroid use were associated with overall improved survival.ConclusionIn our large single-centre retrospective database of patients hospitalised with COVID-19, smoking was associated with development of critical illness and higher likelihood of death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.