Polytriarylamine (PTAA) is a promising yet trending organic semiconductor material in which has unique characteristics that are low-cost fabrication, flexible and stable in room condition. The unique characteristic of PTAA thin films have attracted researchers to explore more on its ability as future green technology solutions. In this works, the effect of annealing temperature towards PTAA thin films are focused. PTAA thin films is fabricated by solution processed technique and sintered onto the glass substrate by spin coating method. The spin coating speed are 1000 RPM to 5000 RPM. The PTAA thin films are further annealed for an hour with temperatures of 80 oC, 120 oC and 150 oC. It is shown that grain size of thin films are increasing as the temperature increased based on XRD analysis. As for 1000 to 5000 RPM, the highest grain size obtain are 26.46 nm, 31.34 nm, 37.19 nm, 39.96 nm and 42.72 nm, respectively. Optical characteristic also reveals that band gap energy value is perpendicular to the increasing in temperature obtain from the UV-Vis spectrum. The results strongly show that annealing temperature had significantly affected both structural and optical properties of PTAA thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.