We theoretically investigate the optical response and the propagation of an external probe field in a Fabry–Perot cavity, which consists of a mechanical mode of trapped, ultracold, fermionic atoms inside and simultaneously driven by an optical laser field. We investigate the electromagnetically-induced transparency due to coupling of the optical cavity field with the collective density excitations of the ultracold fermionic atoms via radiation pressure force. Moreover, we discuss the variations in the phase and group delay of the transmitted probe field with respect to effective cavity detuning as well as pumping power. It is observed that the transmitted field is lagging in this fermionic cavity optomechanical system. Our study shall provide a method to control the propagation as well as the speed of the transmitted probe field in this kind of fermionic, ultracold, atom-based, optomechanical cavity system, which might have potential applications in optical communications, signal processing and quantum information processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.