The IoT (Internet of Things) connect systems, applications, data storage, and services that may be a new gateway for cyber-attacks as they continuously offer services in the organization. Currently, software piracy and malware attacks are high risks to compromise the security of IoT. These threats may steal important information that causes economic and reputational damages. In this paper, we have proposed a combined deep learning approach to detect the pirated software and malware-infected files across the IoT network. The TensorFlow deep neural network is proposed to identify pirated software using source code plagiarism. The tokenization and weighting feature methods are used to filter the noisy data and further, to zoom the importance of each token in terms of source code plagiarism. Then, the deep learning approach is used to detect source code plagiarism. The dataset is collected from Google Code Jam (GCJ) to investigate software piracy. Apart from this, the deep convolutional neural network is used to detect malicious infections in IoT network through color image visualization. The malware samples are obtained from Maling dataset for experimentation. The experimental results indicate that the classification performance of the proposed solution to measure the cybersecurity threats in IoT are better than the state of the art methods. INDEX TERMS Internet of Things, data mining, cyber security, software piracy, malware detection.
Deep learning is one of the most unexpected machine learning techniques which is being used in many applications like image classification, image analysis, clinical archives and object recognition. With an extensive utilization of digital images as information in the hospitals, the archives of medical images are growing exponentially. Digital images play a vigorous role in predicting the patient disease intensity and there are vast applications of medical images in diagnosis and investigation. Due to recent developments in imaging technology, classifying medical images in an automatic way is an open research problem for researchers of computer vision. For classifying the medical images according to their relevant classes a most suitable classifier is most important. Image classification is beneficial to predict the appropriate class or category of unknown images. The less discriminating ability and domain-specific categorization are the main drawbacks of low-level features. A semantic gap that exists between features of low-level as machine understanding and features of human understanding as high-level perception. In this research, a novel image representation method is proposed where the algorithm is trained for classifying medical images by deep learning technique. A pre-trained deep convolution neural network method with the fine-tuned approach is applied to the last three layers of deep neural network. The results of the experiment exhibit that our method is best suited to classify various medical images for various body organs. In this manner, data can sum up to other medical classification applications which supports radiologist's efforts for improving diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.