Over 9 million new active tuberculosis (TB) cases emerge each year from an enormous pool of 2 billion individuals latently infected with Mycobacterium tuberculosis (M. tb.) worldwide. About 3 million new TB cases per year are unaccounted for, and 1.5 million die. TB, however, is generally curable if diagnosed correctly and in a timely manner. The current diagnostic methods for TB, including state-of-the-art molecular tests, have failed in delivering the capacity needed in endemic countries to curtail this ongoing pandemic. Efficient, cost effective and scalable diagnostic approaches are critically needed. We report a multiplex TB serology panel using microbead suspension array containing a combination of 11 M.tb. antigens that demonstrated overall sensitivity of 91% in serum/plasma samples from TB patients confirmed by culture. Group wise sensitivities for sputum smear positive and negative patients were 95%, and 88%, respectively. Specificity of the test was 96% in untreated COPD patients and 91% in general healthy population. The sensitivity of this test is superior to that of the frontline sputum smear test with a comparable specificity (30–70%, and 93–99%, respectively). The multiplex serology test can be performed with scalability from 1 to 360 patients per day, and is amenable to automation for higher (1000s per day) throughput, thus enabling a scalable clinical work flow model for TB endemic countries. Taken together, the above results suggest that well defined antibody profiles in blood, analyzed by an appropriate technology platform, offer a valuable approach to TB diagnostics in endemic countries.
1. The preparation of stereospecifically tritiated glycines and the determination of their absolute configurations by the use of d-amino acid oxidase are described. 2. The reaction catalysed by serine transhydroxymethylase, which results in the conversion of glycine into serine, has been separated into at least four partial reactions. It is suggested that the first event in this conversion is the formation of a Schiff base intermediate of glycine and pyridoxal phosphate. The next important step involves the removal of the 2S-hydrogen atom of glycine to give a carbanion intermediate. Experiments pertinent to the mechanism of conversion of this carbanion intermediate into serine are described. 3. The enzyme preparation catalysing the conversion of glycine into serine also participates in the conversion of glycine into threonine and allothreonine. In both these conversions, glycine --> serine and glycine --> threonine, the 2S-hydrogen atom of glycine is eliminated and the 2R-hydrogen atom of glycine is retained. 4. In the light of these experiments the mechanism of action of serine transhydroxymethylase is discussed. It is suggested that methylenetetrahydrofolate is the carrier of formaldehyde, from which formaldehyde may be liberated at the active site of the enzyme, thus allowing the overall reaction to take place.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.