Phase change materials (PCM) with their high latent heat capacity have a great ability to store energy during their phase change process. The PCM are renowned for their applications in solar and thermal energy storage systems for the purpose of heating and cooling. However, one of the major drawbacks of PCM is their low thermal conductivity due to which their charging and discharging time reduces along with the reduction in energy storage capacity. This reduction in the energy storage capacity of PCM can be improved by producing organic-inorganic hybrid form-stable PCM, with the combination of two or more PCM together to increase their energy storage capacity. Nanoparticles that possess high thermal conductivity are also doped with these hybrid PCM (HPCM)to improve the effectiveness of thermal conductivity. This paper presents a short review on the applications of HPCM in energy storage and building application. Apart from this a short section of applications of composite PCM (CPCM) is also reviewed with discussions made at the end of each section. Results from the past literature depicted that the application of these HPCM and CPCM enhanced the energy storage capacity and thermal conductivity of the base PCM and selection of a proper hybrid material plays an essential role in their stability. It is presumed that this study will provide a sagacity, to the readers, to investigate their thermophysical properties and other essential applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.