Human skin and hair can simultaneously feel pressure, temperature, humidity, strain, and fl ow-great inspirations for applications such as artifi cial skins for burn and acid victims, robotics, and vehicular technology. Previous efforts in this direction use sophisticated materials or processes. Chemically functionalized, inkjet printed or vacuum-technology-processed papers albeit cheap have shown limited functionalities. Thus, performance and/or functionalities per cost have been limited. Here, a scalable "garage" fabrication approach is shown using off-the-shelf inexpensive household elements such as aluminum foil, scotch tapes, sticky-notes, napkins, and sponges to build "paper skin" with simultaneous real-time sensing capability of pressure, temperature, humidity, proximity, pH, and fl ow. Enabling the basic principles of porosity, adsorption, and dimensions of these materials, a fully functioning distributed sensor network platform is reported, which, for the fi rst time, can sense the vitals of its carrier (body temperature, blood pressure, heart rate, and skin hydration) and the surrounding environment.