Climate change scenarios predict that an extended period of drought is a real threat to food security, emphasizing the need for new crops that tolerate these conditions. Quinoa is the best option because it has the potential to grow under water deficit conditions. There is considerable variation in drought tolerance in quinoa genotypes, and the selection of drought-tolerant quinoa germplasms is of great interest. The main goal of this work is to evaluate the crop yield and characterize the physiology of 20 quinoa genotypes grown under water deficit in a wirehouse. The experiment was a complete randomized design (CRD) factorial with three replications. Seedling growth, i.e., fresh weight (FW), dry weight (DW), root length (RL), shoot length (SL), relative growth rate of root length (RGR-RL), shoot length (RGR-SL), and physiological performance, i.e., chlorophyll content (a and b), carotenoid, leaf phenolic content, leaf proline content, membrane stability index (MSI), and leaf K+ accumulation were evaluated in a hydroponic culture under different water-deficit levels developed by PEG 6000 doses (w/v) of 0% (control), 0.3%, and 0.6%. Yield attributes were evaluated in a pot at three different soil moisture levels, as determined by soil gravimetric water holding capacity (WHC) of 100 (control), 50% WHC (50 % drought stress) and 25% WHC (75% stress). In both experiments, under the water stress condition, the growth (hydroponic study) and yield traits (pot study) were significantly reduced compared to control treatments. On the drought tolerance index (DTI) based on seed yield, genotype 16 followed by 10, 1, 4, 5, 7, and 12 could be considered drought-tolerant genotypes that produced maximum grain yield and improved physiological characteristics under severe water stress conditions in hydroponic culture. In both studies, genotypes 3, 8, 13, and 20 performed poorly and were considered drought-sensitive genotypes with the lowest DTI values under water-stressed conditions. All the studied agronomic traits (grain yield, root and shoot length, shoot fresh and dry weights) and physiological traits (leaf phenolic, proline content, carotenoid, K+ accumulation, membrane stability index, and relative water content) were firmly inter-correlated and strongly correlated with DTI. They can be regarded as screening criteria, employing a large set of quinoa genotypes in a breeding program.
Agronomic biofortification is the purposeful utilization of mineral fertilizers to increase the concentration of desired minerals in edible plant parts for enhancing their dietary intake. It is becoming crucial to enhance the dietary intake of K for addressing hidden hunger and related health issues such as cardiac diseases and hypertension. This study was designed to enhance the potassium concentration in edible parts of spinach through its foliar application under saline environment. The salinity levels of electrical conductivity (EC) = 4, 6, and 8 dS m−1 were applied using sodium chloride (NaCl) along with control. The levels of K for foliar sprays were 5 and 10 mM, along with control. The present experiment was performed under two factorial arrangements in a completely randomized design (CRD). After 60 days of sowing, the crop was harvested. Data regarding growth, ionic, physiological, and biochemical parameters, i.e., shoot dry weight, relative water content, electrolyte leakage, total chlorophyll content, tissue sodium (Na) and K concentration, activities of superoxide dismutase (SOD), and catalase (CAT) were recorded and those were found to be significantly (p ≤ 0.05) affected by foliar application of K on spinach under saline conditions. The highest growth, physiological and biochemical responses of spinach were observed in response to foliar-applied K at 10 mM. It is concluded that agronomic bio-fortification by foliar use of K can be a useful strategy to increase tissue K intakes and minimize Na toxicity in the vegetables studied under saline conditions.
Treatment of basal cell carcinoma (BCC) usually involves surgical interventions and laser ablation, but in locally advanced BCC, which arise either from earlier untreated lesions or from recurrence of aggressive BCC, surgery and radiotherapy are not helpful. Vismodegib, the first oral-targeted therapy for locally advanced and metastatic BCC, unsuitable for surgery or radiotherapy, was recently approved by US Food and Drug Administration (FDA). The drug was under the priority review program of FDA and was approved on the basis of promising results of phase II trial. Vismodegib acts by targeting the hedgehog pathway, which is activated abnormally in most BCCs. Approval of vismodegib is a big step ahead in the treatment of advanced BCC, where there was no other effective drug therapy till now.
Accurate identification of agricultural pests is key requirement for the successful integrated pest management (IPM) program. However, due to limitations of conventional morphological methods, other molecular method like DNA barcoding is used. The current study was designed to evaluate the accuracy of morphological identification of insect pests using DNA barcoding. Morphologically, a total of 247 insect pests, representing 10 families, 18 genera, 22 species were identified. However, molecular identifications confirmed the presence of 11 families, 16 genera, and 20 species of agricultural pests. A total of 59 specimens were processed for DNA barcoding but genomic sequences of mt COI gene up to 600 bp were revived from 48 samples. Specimens that were misidentified through morphological studies were placed to their appropriate taxon, using this molecular approach. Results revealed the existence of clear barcode gap for different pest species. Moreover, the values of distance with the nearest neighbour recorded were higher than the maximum intra-sequence divergences for all species. It is concluded that DNA barcoding is a reliable technique for identification of agricultural pests, especially for immature stages when morphometric studies are ambiguous and will be helpful in the development of more effective pest management options for regulating pest species. ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.