High density polyethylene (HDPE) with micro calcium carbonate (CaCO 3 ) masterbatch was pelletized by using a twin screw extruder and different ASTM specimens were molded by an injection molding machine. The morphology of the composites was characterized by scanning electron microscopy (SEM) and Image Analysis software. The dispersion and interfacial interaction between CaCO 3 and the polymer matrix were also investigated by SEM. The thermal properties of HDPE and its composites were investigated by differential scanning calorimetry (DSC). The crystallization process of the composites samples was found to be slightly different than that of the neat HDPE. Otherwise, the presence of CaCO 3 did not have a considerable effect on the melting behavior of the composites. Thermogravimetric analysis (TGA) revealed that the composites had better thermal stability than the neat HDPE resin as indicated by a higher temperature of 50% weight loss (T 50% ) for the composites as compared to that of the neat resin. The viscoelastic properties of the composites and HDPE were also investigated via torsional and rotational techniques. The presence of CaCO 3 increased the shear modulus at low frequency of the composites at 80 C over that of the neat resin. However, at higher frequencies, the difference between the neat resin and the composites' shear modulus was less than that at low frequencies. The complex viscosity of the composite increased upon the addition of CaCO 3 . However, the shear sensitivities of the neat resin and the microcomposite were similar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.