Due to the massive increase of user-generated web content, in particular on social media networks where anyone can give a statement freely without any limitations, the amount of hateful activities is also increasing. Social media and microblogging web services, such as Twitter, allowing to read and analyze user tweets in near real time. Twitter is a logical source of data for hate speech analysis since users of twitter are more likely to express their emotions of an event by posting some tweet. This analysis can help for early identification of hate speech so it can be prevented to be spread widely. The manual way of classifying out hateful contents in twitter is costly and not scalable. Therefore, the automatic way of hate speech detection is needed to be developed for tweets in Indonesian language. In this study, we used ensemble method for hate speech detection in Indonesian language. We employed five stand-alone classification algorithms, including Naïve Bayes, K-Nearest Neighbours, Maximum Entropy, Random Forest, and Support Vector Machines, and two ensemble methods, hard voting and soft voting, on Twitter hate speech dataset. The experiment results showed that using ensemble method can improve the classification performance. The best result is achieved when using soft voting with F1 measure 79.8% on unbalance dataset and 84.7% on balanced dataset. Although the improvement is not truly remarkable, using ensemble method can reduce the jeopardy of choosing a poor classifier to be used for detecting new tweets as hate speech or not.
Sentiment analysis become very useful since the rise of social media and online review website and, thus, the requirement of analyzing their sentiment in an effective and efficient way. We can consider sentiment analysis as text classification problem with sentiment as its categories. In this study, we explore the use of Random Forest for sentiment classification in Indonesian language. We also explore the use of bag of words (BOW) features with some term weighting methods variation such as Binary TF, Raw TF, Logarithmic TF and TF.IDF. The experiment result showed that sentiment analysis system using random forest give good performance with average OOB score 0.829. The result also depicted that all of the four term weighting method has competitive result. Since the score difference is not very significant, we can say that the term weighting method variation in study has no remarkable effect for sentiment analysis using Random Forest.
<span lang="EN-US">Online product reviews have become a source of greatly valuable information for consumers in making purchase decisions and producers to improve their product and marketing strategies. However, it becomes more and more difficult for people to understand and evaluate what the general opinion about a particular product in manual way since the number of reviews available increases. Hence, the automatic way is preferred. One of the most popular techniques is using machine learning approach such as Support Vector Machine (SVM). In this study, we explore the use of Word2Vec model as features in the SVM based sentiment analysis of product reviews in Indonesian language. The experiment result show that SVM can performs well on the sentiment classification task using any model used. However, the Word2vec model has the lowest accuracy (only 0.70), compared to other baseline method including Bag of Words model using Binary TF, Raw TF, and TF.IDF. This is because only small dataset used to train the Word2Vec model. Word2Vec need large examples to learn the word representation and place similar words into closer position.</span>
One of the most common issue in information retrieval is documents ranking. Documents ranking system collects search terms from the user and orderly retrieves documents based on the relevance. Vector space models based on TF.IDF term weighting is the most common method for this topic. In this study, we are concerned with the study of automatic retrieval of Islamic Fiqh (Law) book collection. This collection contains many books, each of which has tens to hundreds of pages. Each page of the book is treated as a document that will be ranked based on the user query. We developed class-based indexing method called inverse class frequency (ICF) and book-based indexing method inverse book frequency (IBF) for this Arabic information retrieval. Those method then been incorporated with the previous method so that it becomes TF.IDF.ICF.IBF. The term weighting method also used for feature selection due to high dimensionality of the feature space. This novel method was tested using a dataset from 13 Arabic Fiqh e-books. The experimental results showed that the proposed method have the highest precision, recall, and F-Measure than the other three methods at variations of feature selection. The best performance of this method was obtained when using best 1000 features by precision value of 76%, recall value of 74%, and F-Measure value of 75%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.