With progressive technological advancements, the time for electric vehicles (EVs) and unmanned aerial vehicles (UAVs) has finally arrived for the masses. However, intelligent transportation systems need to develop appropriate protocols that enable swift predictive communication among these battery-powered devices. In this paper, we highlight the challenges in message routing in a unified paradigm of electric and flying vehicles (EnFVs). We innovate over the existing routing scheme by considering multi-objective EnFVs message routing using a novel modified genetics algorithm. The proposed scheme identifies all possible solutions, outlines the Pareto-front, and considers the optimal solution for the best route. Moreover, the reliability, data rate, and residual energy of vehicles are considered to achieve high communication gains. An exhaustive evaluation of the proposed and three existing schemes using a New York City real geographical trace shows that the proposed scheme outperforms existing solutions and achieves a 90%+ packet delivery ratio, longer connectivity time, shortest average hop distance, and efficient energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.