BackgroundCyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is their source of nutrients throughout their life. A transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that gene expression in the syncytium is different from that of the root with thousands of genes upregulated or downregulated. Among the downregulated genes are many which code for defense-related proteins. One gene which is strongly downregulated codes for the ethylene response transcription factor RAP2.6. The genome of Arabidopsis contains 122 ERF transcription factor genes which are involved in a variety of developmental and stress responses.ResultsExpression of RAP2.6 was studied with RT-PCR and a promoter::GUS line. During normal growth conditions the gene was expressed especially in roots and stems. It was inducible by Pseudomonas syringae but downregulated in syncytia from a very early time point on. Overexpression of the gene enhanced the resistance against H. schachtii which was seen by a lower number of nematodes developing on these plants as well as smaller syncytia and smaller female nematodes. A T-DNA mutant had a reduced RAP2.6 transcript level but this did not further increase the susceptibility against H. schachtii. Neither overexpression lines nor mutants had an effect on P. syringae. Overexpression of RAP2.6 led to an elevated expression of JA-responsive genes during early time points after infection by H. schachtii. Syncytia developing on overexpression lines showed enhanced deposition of callose.ConclusionsOur results showed that H. schachtii infection is accompanied by a downregulation of RAP2.6. It seems likely that the nematodes use effectors to actively downregulate the expression of this and other defense-related genes to avoid resistance responses of the host plant. Enhanced resistance of RAP2.6 overexpression lines seemed to be due to enhanced callose deposition at syncytia which might interfere with nutrient import into syncytia.
Nematodes are omnipresent in nature including many species which are parasitic to plants and cause enormous economic losses in various crops. During the process of parasitism, sedentary phytonematodes use their stylet to secrete effector proteins into the plant cells to induce the development of specialized feeding structures. These effectors are used by the nematodes to develop compatible interactions with plants, partly by mimicking the expression of host genes. Intensive research is going on to investigate the molecular function of these effector proteins in the plants. In this review, we have summarized which physiological and molecular changes occur when endoparasitic nematodes invade the plant roots and how they develop a successful interaction with plants using the effector proteins. We have also mentioned the host genes which are induced by the nematodes for a compatible interaction. Additionally, we discuss how nematodes modulate the reactive oxygen species (ROS) and RNA silencing pathways in addition to post-translational modifications in their own favor for successful parasitism in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.