Strong circularly polarized luminescence (CPL) with high purity and broad tunability was achieved in a new type of polyether-based cholesteric liquid crystalline (CLC) copolymers comprising chiral cholesteryl, nematic mesogens, and cross-linkable moieties. The phase boundary diagram of the copolymers was constructed, wherein the CLC phase in a wide composition and temperature window down to room temperature was achieved. Furthermore, reflection colors across the infrared and visible light regions can be continuously tuned by altering composition or temperature, which can be further fixed in the flexible CLC elastomer by photo-cross-linking. Introducing achiral dyes in the CLC thin films can generate strong CPL with distinct handedness and high dissymmetry factors (g lum ). Particularly, the lefthanded full-color CPL is obtained by selective circularly polarized scattering in the spectral region outside the band gap of the CLC thin film, and the righthanded CPL with g lum up to −1.05 is achieved within the band gap of the CLC thin film following the selective circularly polarized reflection mechanism. This type of CPL active material is expected to have potential applications in liquid crystal display and photonics.
Liquid crystalline polymers with tunable structures on the scale of visible wavelength are important in optical technology due to their enhanced mechanical stability, processability, and structural integrity. Herein, we report a series of cholesteric liquid crystalline (CLC) polyethers with a widely tunable pitch length and a broad CLC phase window through a bottom-up structural design. The well-defined multicomponent polyethers were successfully synthesized by utilizing monomer-activated anionic ring-opening polymerization. Through adjustment of the composition of chiral cholesteryl (Ch) and photochromic azobenzene (Az) mesogenic moieties, rich phase behaviors have been discovered, and a phase boundary diagram was constructed consequently, wherein cholesteric helical superstructures in a broad composition range and temperature window straight down to the glassy state at room temperature were achieved. Particularly, the planar oriented helical superstructures can exhibit widely tunable and switchable reflections over the entire visible range across red, green, and blue colors through temperature and light control, which are closely related to the extraordinary flexibility of the polyether backbone. Their thermo-light dualresponsive properties provide an alternative opportunity to fabricate smart and switchable polymeric LC materials for optical applications.
Nontraditional polyurethane (PU) has been successfully synthesized by anionic copolymerization of some typical aryl isocyanates and epoxides with ammonium halide onium salt (Lewis base) as the initiator and triisobutylaluminum (Lewis acid) as the activator and the synergistic coordinator. In contrast to the traditional step-growth approach, this chain-growth copolymerization can maintain the anionic propagation site and exhibit some living features with a high activity, by which the copolymers synthesized have narrow molecular weight distributions and discrete end groups. The copolymer is primarily constituted by a urethane linkage, and the byproducts of isocyanurate trimer and oxazolidinone can be effectively suppressed as the polymerization proceeds. Density functional theory (DFT) calculations were also performed to support the proposed reaction mechanism.
Azobenzene‐containing small molecules and polymers are functional photoswitchable molecules to form supramolecular nanomaterials for various applications. Recently, supramolecular nanomaterials have received enormous attention in material science because of their simple bottom‐up synthesis approach, understandable mechanisms and structural features, and batch‐to‐batch reproducibility. Azobenzene is a light‐responsive functional moiety in the molecular design of small molecules and polymers and is used to switch the photophysical properties of supramolecular nanomaterials. Herein, we review the latest literature on supramolecular nano‐ and micro‐materials formed from azobenzene‐containing small molecules and polymers through the combinatorial effect of weak molecular interactions. Different classes including complex coacervates, host‐guest systems, co‐assembled, and self‐assembled supramolecular materials, where azobenzene is an essential moiety in small molecules, and photophysical properties are discussed. Afterward, azobenzene‐containing polymers‐based supramolecular photoresponsive materials formed through the host‐guest approach, polymerization‐induced self‐assembly, and post‐polymerization assembly techniques are highlighted. In addition to this, the applications of photoswitchable supramolecular materials in pH sensing, and CO2 capture are presented. In the end, the conclusion and future perspective of azobenzene‐based supramolecular materials for molecular assembly design, and applications are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.