In this study, several simple equations are suggested to investigate the effects of size and density on the number, surface area, stiffening efficiency, and specific surface area of nanoparticles in polymer nanocomposites. In addition, the roles of nanoparticle size and interphase thickness in the interfacial/interphase properties and tensile strength of nanocomposites are explained by various equations. The aggregates/agglomerates of nanoparticles are also assumed as large particles in nanocomposites, and their influences on the nanoparticle characteristics, interface/interphase properties, and tensile strength are discussed. The small size advantageously affects the number, surface area, stiffening efficiency, and specific surface area of nanoparticles. Only 2 g of isolated and well-dispersed nanoparticles with radius of 10 nm (R = 10 nm) and density of 2 g/cm3 produce the significant interfacial area of 250 m2 with polymer matrix. Moreover, only a thick interphase cannot produce high interfacial/interphase parameters and significant mechanical properties in nanocomposites because the filler size and aggregates/agglomerates also control these terms. It is found that a thick interphase (t = 25 nm) surrounding the big nanoparticles (R = 50 nm) only improves the B interphase parameter to about 4, while B = 13 is obtained by the smallest nanoparticles and the thickest interphase.
Wastewater irrigated fields can cause potential contamination with heavy metals to soil and groundwater, thus pose a threat to human beings . The current study was designed to investigate the potential human health risks associated with the consumption of okra vegetable crop contaminated with toxic heavy metals. The crop was grown on a soil irrigated with treated wastewater in the western region of Saudi Arabia during 2010 and 2011. The monitored heavy metals included Cd, Cr, Cu, Pb and Zn for their bioaccumulation factors to provide baseline data regarding environmental safety and the suitability of sewage irrigation in the future. The pollution load index (PLI), enrichment factor (EF) and contamination factor (CF) of these metals were calculated. The pollution load index of the studied soils indicated their level of metal contamination. The concentrations of Ni, Pb, Cd and Cr in the edible portions were above the safe limit in 90%, 28%, 83% and 63% of the samples, respectively. The heavy metals in the edible portions were as follows: Cr > Zn > Ni > Cd > Mn > Pb > Cu > Fe. The Health Risk Index (HRI) was >1 indicating a potential health risk. The EF values designated an enhanced bio-contamination compared to other reports from Saudi Arabia and other countries around the world. The results indicated a potential pathway of human exposure to slow poisoning by heavy metals due to the indirect utilization of vegetables grown on heavy metal-contaminated soil that was irrigated by contaminated water sources. The okra tested was not safe for human use, especially for direct consumption by human beings. The irrigation source was identified as the source of the soil pollution in this study.
Severe soil erosion challenges exist in China as a result of long-term human related activities and its erosion-prone land forms and climate. Anthropogenic forces that alter the physical landscape cause substantial soil erosion which have adverse impact on surface water bodies and therefore necessitating sediment control as important aspects of catchment management planning. In this review we focused principally on the erosion factors and how to prevent and/or mitigate them. The application of soil erosion models such as the universal soil loss equation, its modification and others were also studied. The results established by various researchers showed a relationship between impact of soil erosion and degradation on water quality indicating the source of pollutant as anthropogenic and industrial activities. These are the sources of particles and deleterious material that contribute to the surface water deterioration including the East Lake. The review revealed that erosion causes both on-site and off-site effects on land and also on water bodies thereby affecting its quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.