This study aims to develop a Kalman filter algorithm in order to reduce the accelerometer sensor noise as effectively as possible. The accelerometer sensor is one part of the Inertial Measurement Unit (IMU) used to find the displacement distance of an object. The method used is modeling the system to model the accelerometer system to form mathematical equations. Then the state space method is used to change the system modeling to the form of matrix operations so that the process of the data calculating to the Kalman Filter algorithm is not too difficult. It also uses the threshold algorithm to detect the sensor's condition at rest. The present study had good results, which of the four experiments obtained with an average accuracy of 93%. The threshold algorithm successfully reduces measurement errors when the sensor is at rest or static so that the measurement results more accurate. The developed algorithm can also detect the sensor to move forward or backward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.