Classical shape analysis methods use principal component analysis to reduce the dimensionality of shape spaces. The basic assumption behind these methods is that the subspace corresponding to the major modes of variation for a particular class of shapes is linearised. This may not necessarily be the case in practice. In this paper, we present a novel method for extraction of the intrinsic parameters of multiple shape classes in an unsupervised manner. The proposed method is based on learning the global structure of shape manifolds using diffusion maps. We demonstrate that the method is effective in separating the members of different shape classes after embedding them into a low-dimensional Euclidean space.
Epilepsy is one of the most common mental disorders in the world, affecting 65 million people. The prevalence in Arab countries of Epilepsy is estimated at 174 per 100,000 individuals, and in Saudi Arabia is 6.54 per 1,000 individuals. Epilepsy seizures have different types, and each patient needs to have a treatment plan according to the seizure type. Hence, accurate classification of seizure type is an essential part of diagnosing and treating epileptic patients. In this paper, the features based on fast Fourier transform from EEG montages were used to classify different types of seizures. Since the distribution of classes was not uniform, the dataset suffered from severe imbalance. Various algorithms were used to under-sample the majority class and over-sample the minority classes. Random forest classifier produced classification accuracy of 96% to differentiate three types of seizures from the healthy EEG reading.
Forest fire disasters are recently getting lots of attention due to climate change globally. Globally, climate changes are rapidly changing the fire patterns on Earth. Effective fire management requires accurate information about the fire occurrence, its spread, and impact on the environment. Prediction of fire activities in the forest guides the authorities to make optimal, efficient, and sound decisions in fire management. This paper aims to summarize recent trends in the forest fire events prediction, detection, spread rate, and mapping of the burned areas. Furthermore, fire emissions in terms of smoke also put the Earth's public health and ecological system at greater risk. Hence, future policymaking can be more accurate in saving billions of dollars, improving the healthy environment and ecological cycle for the inhabitants of this Earth. This paper provides a comprehensive review of the usage of different machine learning algorithms in forest fire or wildfire management. Furthermore, we have identified some potential areas where new technologies and data can help better fire management decision making.
This article presents an area-aware unified hardware accelerator of Weierstrass, Edward, and Huff curves over GF(2233) for the point multiplication step in elliptic curve cryptography (ECC). The target implementation platform is a field-programmable gate array (FPGA). In order to explore the design space between processing time and various protection levels, this work employs two different point multiplication algorithms. The first is the Montgomery point multiplication algorithm for the Weierstrass and Edward curves. The second is the Double and Add algorithm for the Binary Huff curve. The area complexity is reduced by efficiently replacing storage elements that result in a 1.93 times decrease in the size of the memory needed. An efficient Karatsuba modular multiplier hardware accelerator is implemented to compute polynomial multiplications. We utilized the square arithmetic unit after the Karatsuba multiplier to execute the quad-block variant of a modular inversion, which preserves lower hardware resources and also reduces clock cycles. Finally, to support three different curves, an efficient controller is implemented. Our unified architecture can operate at a maximum of 294 MHz and utilizes 7423 slices on Virtex-7 FPGA. It takes less computation time than most recent state-of-the-art implementations. Thus, combining different security curves (Weierstrass, Edward, and Huff) in a single design is practical for applications that demand different reliability/security levels.
This research presents a novel binary Edwards curve (BEC) accelerator designed specifically for resource-constrained embedded systems. The proposed accelerator incorporates the fixed window algorithm, a two-stage pipelined architecture, and the Montgomery radix-4 multiplier. As a result, it achieves remarkable performance improvements in throughput and resource utilization. Experimental results, conducted on various Xilinx Field Programmable Gate Arrays (FPGAs), demonstrate impressive throughput/area ratios observed for GF(2233). The achieved ratios for Virtex-4, Virtex-5, Virtex-6, and Virtex-7 are 12.2, 19.07, 36.01, and 38.39, respectively. Furthermore, the processing time for one-point multiplication on a Virtex-7 platform is 15.87 µs. These findings highlight the effectiveness of the proposed accelerator for improved throughput and optimal resource utilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.