Highlights It is an attempt to understand the mechanism that is crucial to predict the success of COVID-19 management policies. First, we investigate the level of knowledge and awareness of COVID-19 among university students and graduates. Second, we examine the attitudes and confidence of them in the success of the COVID-19 management policy. The results suggest an urgent need for health education programs to hold optimistic attitudes. Also, the rebuilding of trust in local health facilities is necessary to avoid the possible next wave of COVID-19.
Genome-wide association study (GWAS) was performed for stomata- and yield-related attributes with high-density Illumina 90 K Infinium SNP (single nucleotide polymorphism) array in bread wheat to determine genetic potential of germplasm for scarce water resources with sustainable yield potential. Major yield and stomata attributes were phenotyped on a panel of Pakistani and foreign accessions grown in non-stressed and water shortage environments during two seasons. Highly significant variations were shown among accessions in both conditions for examined characteristics. Water shortage conditions reduced the overall wheat yield and strong positive correlation existed among stomatal frequency, leaf venation and grain yield per plant. Population structure analyses based on 90,000 SNP data classified the accessions into four sub-populations which indicated the presence of genetic variability. Marker-trait association (MTA) analyses revealed that 422 significant SNPs at p ≤ 10−3, after crossing the false discovery rate (FDR) <0.05 threshold, were linked with examined attributes. Pleiotropic loci (wsnp_Ex_c8913_14881924 and Tdurum_contig10598_304) were associated with flag leaf area (FLA), stomata size (SS), stomata frequency (SF), leaf venation (LV), number of grain per spike (NGS) and grain yield per plant (GYP), which were located on chromosome 4B and 6B at the positions 173.63cM and 229.64cM, respectively, under water shortage conditions. Pleotropic loci wsnp_Ex_c24167_33416760, wsnp_Ex_c5412_9564046 and Tdurum_contig81797_369 on chromosomes 7A, 2A and 4B at the positions 148.26cM, 261.05cM and 173.63cM, respectively, were significantly linked with stomata and yield indices such as FLA, SS, SF, LV, NGS and GYP under normal and water shortage conditions. The current experiment not only validated several MTAs for studied indices reported in other studies but also discovered novel MTAs significant under water shortage environments. Associated and significant SNPs will be useful in discovering novel genes underpinning water shortage tolerance in bread wheat for producing high-yielding and drought tolerant wheat varieties to fulfill the wheat demand for growing populations.
The decrease in water resources is a serious threat to food security world-wide. In this regard, a genome-wide association study (GWAS) was conducted to identify grain yield and quality-related genes/loci under normal and water-deficit conditions. Highly significant differences were exhibited among genotypes under both conditions for all studied traits. Water-deficit stress caused a reduction in grains yield and an increase in grains protein contents (GPC) and gluten contents (GLC). Population structure divided the 96 genotypes into four sub-populations. Out of 72 significant marker-trait associations (MTAs), 28 and 44 were observed under normal and water-deficit stress conditions, respectively. Pleiotropic loci (RAC875_s117925_244, BobWhite_c23828_341 and wsnp_CAP8_c334_304253) for yield and quality traits were identified on chromosomes 5A, 6B and 7B, respectively, under normal conditions. Under a water-deficit condition, the pleiotropic loci (Excalibur_c48047_90, Tdurum_contig100702_265 and BobWhite_c19429_95) for grain yield per plant (GYP), GPC and GLC were identified on chromosomes 3A, 4A and 7B, respectively. The pleiotropic loci (BS00063551_51 and RAC875_c28721_290) for GPC and GLC on chromosome 1B and 3A, respectively, were found under both conditions. Besides the validation of previously reported MTAs, some new MTAs were identified for flag leaf area (FLA), thousand grain weight (TGW), GYP, GPC and GLC under normal and water-deficit conditions. Twenty SNPs associated with the traits were mapped in the coding DNA sequence (CDS) of the respective candidate genes. The protein functions of the identified candidate genes were predicted and discussed. Isolation and characterization of the candidate genes, wherein, SNPs were mapped in CDS will result in discovering novel genes underpinning water-deficit tolerance in bread wheat.
Plant growth-promoting rhizobacteria are known to associate with several cereal crops. The rhizobacterium exerts its function by synthesizing diverse arrays of phytohormones, such as cytokinin (Ck). However, it is difficult to determine the plant growth promotion when a bacterium produces many different kinds of phytohormones. Therefore, to assess the involvement of Ck in growth promotion and activation of antioxidant and physiological systems, we set up this experiment. Wheat seeds (Triticum aestivum L.) were inoculated with Azospirillum brasilense RA−17 (which produces zeatin type Ck) and RA−18 (which failed to produce Ck). Results showed that seed inoculation with RA−17 significantly improved growth and yield-related parameters compared with RA−18. The activity of enzymes, proline contents, and endogenous hormonal levels in wheat kernels were improved considerably with RA−17 than with RA−18. Strain RA−17 enhanced grain assimilation more than strain RA−18 resulting in a higher crop yield. These results suggest that microbial Ck production may be necessary for stimulating plant growth promotion and activating antioxidant and physiological systems in wheat.
The regulated production of filamentous protein complexes is essential in many biological processes and provides a new paradigm in signal transmission. The mitochondrial antiviral signaling protein (MAVS) is a critical signaling hub in innate immunity that is activated when a receptor induces a shift in the globular caspase activation and recruitment domain of MAVS into helical superstructures (filaments). It is of interest whether adaptive evolution affects the proteins involved in innate immunity. Here, we explore and confer the role of selection and diversification on mitochondrial antiviral signaling protein in mammalian species. We obtined the MAVS proteins of mammalian species and examined their differences in evolutionary patterns. We discovered evidence for these proteins being subjected to substantial positive selection. We demonstrate that immune system proteins, particularly those encoding recognition proteins, develop under positive selection using codon-based probability methods. Positively chosen regions within recognition proteins cluster in domains involved in microorganism recognition, implying that molecular interactions between hosts and pathogens may promote adaptive evolution in the mammalian immune systems. These significant variations in MAVS development in mammalian species highlights the involvement of MAVS in innate immunity. Our findings highlight the significance of accounting for how non-synonymous alterations affect structure and function when employing sequence-level studies to determine and quantify positive selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.