This work analyzes the Einstein-Gauss-Bonnet gravity of charged black hole solutions through Newman-Janis approach. The Hawking temperature for corresponding black hole is also computed. The solution depends upon rotation parameter a, black hole mass, charge and horizon. Moreover, the graphical behavior of temperature via event horizon to analyze the stability of black hole under the effects of rotation parameter is discussed. The graphs are plotted in the presence/absence of rotation parameter and charge. Furthermore, the Hawking temperature under gravity effects is studied by using the semi-classical method. It is also observed that the maximum temperature at non-zero horizon depicts the BH remnant. Finally, the logarithmic corrected entropy for given black hole is computed and the logarithmic corrected entropy under effects of rotation and correction parameter are studied.
This paper is devoted to the tunneling radiation and quantum gravity effect on tunneling radiation of neutral regular black hole in Rastall gravity. We analyzed the tunneling radiation and Hawking temperature of neutral regular black hole by applying the Hamilton-Jacobi ansatz phenomenon. Lagrangian wave equation have been investigated by generalized uncertainty principle (GUP), using the WKB-approximation and calculated the tunneling rate as well as temperature. Furthermore, we analyzed the temperature of this neutral regular black hole in the presence of gravity. The stability and instability of neutral regular black hole are also analyzed.
We study the electromagnetic field equation along with the WKB approximation. The boson tunneling phenomenon from charged rotating black ring (CRBR) is analyzed. It is examined that reserve radiation consistent with CRBR can be computed in general by neglecting back reaction and self-gravitational of the radiated boson particle. The calculated temperature depends upon quantum gravity and CRBR geometry. We also examine the corrected tunneling rate/probability of boson particles by assuming charge as well as energy conservation laws and the quantum gravity. Furthermore, we study the graphical behavior of the temperature and check the stability and instability of CRBR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.