Stressful environments such as salinity, drought, and high temperature (heat) cause alterations in a wide range of physiological, biochemical, and molecular processes in plants. Photosynthesis, the most fundamental and intricate physiological process in all green plants, is also severely affected in all its phases by such stresses. Since the mechanism of photosynthesis involves various components, including photosynthetic pigments and photosystems, the electron transport system, and CO 2 reduction pathways, any damage at any level caused by a stress may reduce the overall photosynthetic capacity of a green plant. Details of the stress-induced damage and adverse effects on different types of pigments, photosystems, components of electron transport system, alterations in the activities of enzymes involved in the mechanism of photosynthesis, and changes in various gas exchange characteristics, particularly of agricultural plants, are considered in this review. In addition, we discussed also progress made during the last two decades in producing transgenic lines of different C 3 crops with enhanced photosynthetic performance, which was reached by either the overexpression of C 3 enzymes or transcription factors or the incorporation of genes encoding C 4 enzymes into C 3 plants. We also discussed critically a current, worldwide effort to identify signaling components, such as transcription factors and protein kinases, particularly mitogen-activated protein kinases (MAPKs) involved in stress adaptation in agricultural plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.