The development, dissemination, and adoption of improved rice varieties are imperative for global food and nutritional security. Knowledge of the crop’s distribution across agro-ecologies is important for impact assessment studies, varietal replacement strategies, and the development and implementation of agricultural policies. Bangladesh is the world’s 4th largest rice producer. Though traditional varieties (TVs) are abundant and valued throughout Bangladesh, population growth and vulnerability to climate change, necessitate efficient deployment of high-yielding stress-tolerant modern varieties (MVs). To aid agricultural policy and strategy this study aimed to accurately assess the distribution of MVs and TVs across Bangladesh during the rainfed rice-growing season. Information derived from a survey of rice production areas were compared and combined with DNA fingerprinting information from the same locations. Biodiversity of Bangladesh rice remained high. While TVs and first generation MVs of Bangladeshi and Indian origin were still commonly grown, recently released stress-tolerant MVs were adopted in large proportions in several districts. Although farmers successfully distinguished TVs from MVs grown in their fields, a considerable lack of authenticity among MVs was observed, pinpointing shortcomings in the seed supply chain. This study identifies focal points for extension work and validates DNA fingerprinting as reliable method for impact assessment studies.
Rice is a major crop in Bangladesh that supports both food security and livelihoods. However, a need remains for improved productivity and adaptation to the risks associated with climate change. To accomplish this, the increased adoption of climate-resilient and high-yielding rice varieties can be beneficial. Therefore, we conducted a study in Bangladesh over three consecutive years: 2016, 2017, and 2018. The scope of the study included the major cropping season (wet), Aman. The yield advantages of climate-resilient rice varieties were evaluated and compared with those of the varieties popular with farmers. We included new stress-tolerant varieties, such as submergence-tolerant rice (BRRI dhan51 and BRRI dhan52) and drought-tolerant rice (BRRI dhan56 and BRRI dhan71), along with farmer-chosen controls, in the study. We conducted the evaluation through on-farm trials to compare the varieties in both submergence- and drought-affected environments. The seasonal trials provided measured results of yield advantages. The participating farmers were also studied over the three-year-period to capture their varietal adoption rates. We calculated both the location estimated yield advantages (LEYA) and the location observed yield advantages (LOYA). The results revealed that, under non-stress conditions, the grain yields of climate-resilient varieties were either statistically similar to or higher than those of the farmer-chosen controls. Our study also revealed a year-to-year progressive adoption rate for the introduced varieties. The study suggests that the wide-scale introduction and popularization of climate-resilient varieties can ensure higher productivity and climate risk adaptation. The close similarity between LOYA and LEYA indicated that the observational and experiential conclusions of the host farmers were similar to the scientific performance of the varieties. We also found that comparison performed through on-farm trials was a critical method for enhancing experiential learning and obtaining an accurate estimation of yield advantages.
The study examined the impact of rice seed production, processing, and distribution training on the rice seed stakeholders. Ten one-day training events were conducted by Bangladesh Agricultural Development Corporation (BADC) and funded by the International Rice Research Institute (IRRI). Sample size of trainees included 199 rice seed dealers, 62 rice growers, and 29 dealers cum growers across four divisions of Bangladesh. The perceived impact of training was determined by employing a t-test. Almost all of the stakeholders showed improvement in their learning of the subjects designed and the correlation between their knowledge before and after training sessions were highly correlated.. Dealers expressed their views of moderate use of the training outcomes in determining seed demand, storage, and sale, whereas growers and dealer cum growers were highly optimistic about using their knowledge and skills obtained in seed production, processing, storing, and marketing in a better way. Significant changes in knowledge and skills and favorable perceptions were observed among all the stakeholders for better production, processing, and utilization of rice seed.
Adoption of the right rice variety and water-saving irrigation method could reduce greenhouse gas (GHG) emissions in lowland rice cultivation. A study was conducted at the research farm of Bangladesh Agricultural University, Mymensingh, Bangladesh, in 2019 during the Boro (dry) season to determine the impacts of different rice varieties (BRRI dhan29, BRRI dhan47, BRRI dhan69, Binadhan-8, Binadhan-10, and Binadhan-17) on methane (CH4) emissions under two irrigation methods, i.e., alternate wetting and drying (AWD) and continuous flooding (CF). The treatments were laid out in a split-plot design, considering water regime as the main plots and rice variety as the sub-plots. The emission rates of CH4 were determined by collecting air samples using the closed chamber technique and measuring the concentrations using a gas chromatograph. CH4 emission rates varied with the growth and development of the rice varieties. The lowest cumulative CH4 emission rate was observed in Binadhan-17, particularly under AWD irrigation. Across the rice varieties, AWD irrigation significantly reduced the cumulative CH4 emissions by about 35% compared with CF. No significant variation in rice yield was observed between AWD (5.38 t ha−1) and CF (5.16 t ha−1). This study suggests that the cultivation of Binadhan-17 under AWD irrigation could be effective at reducing the carbon footprint of lowland rice fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.