This paper describes a design of industrial modelling process of bacterial cellulose production. The main factors for the economic unfeasibility of this production are raw material price, plant capacity and capital cost. The purpose of this modelling is developing, studying, and evaluating process control technology in order to achieve low-cost preparation and high biocellulose (BC) production in industrial scale. In this model, glucose, a simple carbohydrate has been chosen as the carbon source. The aerobic fermentation ofAcetobacterxylinumis regulated at particular temperature and pH to ensure maximum yield production. This fermentation process involves six stages that are sterilization, inoculation, fermentation, treatment, waste removal and drying/freezing. Nineteen streams will control and monitor the whole processes. The waste will undergo treatment in NaOH tank followed by sedimentation tank and filtration process for removal. Meanwhile, the BC is purified through drying and freezing process to preserve the product from contamination. This design shows that modelling is a powerful methodology for predicting and prioritizing methods of re‐engineering an industrial process in order to achieve greater performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.