Surface deformation is a multi-factor, laser powder-bed fusion (LPBF) defect that cannot be avoided entirely using current monitoring systems. Distortion and warping, if left unchecked, can compromise the mechanical and physical properties resulting in a build with an undesired geometry. Increasing dwell time, pre-heating the substrate, and selecting appropriate values for the printing parameters are common ways to combat surface deformation. However, the absence of real-time detection and correction of surface deformation is a crucial LPBF problem. In this work, we propose a novel approach to identifying surface deformation problems from powder-bed images in real time by employing a convolutional neural network-based solution. Identifying surface deformation from powder-bed images is a significant step toward real-time monitoring of LPBF. Thirteen bars, with overhangs, were printed to simulate surface deformation defects naturally. The carefully chosen geometric design overcomes problems relating to unlabelled data by providing both normal and defective examples for the model to train. To improve the quality and robustness of the model, we employed several deep learning techniques such as data augmentation and various model evaluation criteria. Our model is 99% accurate in identifying the surface distortion from powder-bed images.
This study aims to detect seeded porosity during metal additive manufacturing by employing convolutional neural networks (CNN). The study demonstrates the application of machine learning (ML) in in-process monitoring. Laser powder bed fusion (LPBF) is a selective laser melting technique used to build complex 3D parts. The current monitoring system in LPBF is inadequate to produce safety-critical parts due to the lack of automated processing of collected data. To assess the efficacy of applying ML to defect detection in LPBF by in-process images, a range of synthetic defects have been designed into cylindrical artefacts to mimic porosity occurring in different locations, shapes, and sizes. Empirical analysis has revealed the importance of accurate labelling strategies required for data-driven solutions. We formulated two labelling strategies based on the computer-aided design (CAD) file and X-ray computed tomography (XCT) scan data. A novel CNN was trained from scratch and optimised by selecting the best values of an extensive range of hyper-parameters by employing a Hyperband tuner. The model’s accuracy was 90% when trained using CAD-assisted labelling and 97% when using XCT-assisted labelling. The model successfully spotted pores as small as 0.2mm. Experiments revealed that balancing the data set improved the model’s precision from 89% to 97% and recall from 85% to 97% compared to training on an imbalanced data set. We firmly believe that the proposed model would significantly reduce post-processing costs and provide a better base model network for transfer learning of future ML models aimed at LPBF micro-defects detection.
This article aims to highlight the dosing issues of direct oral anticoagulants (DOACs) in patients with renal insufficiency and/or obesity in an attempt to develop solutions employing advanced data-driven techniques. DOACs have become widely accepted by clinicians worldwide because of their superior clinical profiles, more predictable pharmacokinetics, and hence more convenient dosing relative to other anticoagulants. However, the optimal dosing of DOACs in extreme weight patients and patients with renal impairment is difficult to achieve using conventional dosing approach. The standard dosing approach (fixed-dose) is based on limited data from clinical studies. The existing formulae (models) for determining the appropriate doses for these patient groups lead to suboptimal dosing. This problem of mis-dosing is worsened by the lack of standardised laboratory parameters for monitoring the exposure to DOACs in renal failure and extreme body weight patients. Model-informed precision dosing (MIPD) encompasses a range of techniques like machine learning and pharmacometrics modelling, which could uncover key variables and relationships as well as shed more light on the pharmacokinetics and pharmacodynamics of DOACs in patients with extreme body weight or renal impairment. Ultimately, this individualised approach-if implemented in clinical practicecould optimise the DOACs dosing for better safety and efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.