Carrots are a multi-nutritional food source. They are an important root vegetable, rich in natural bioactive compounds, which are recognised for their nutraceutical effects and health benefits. This review summarises the occurrence, biosynthesis, factors affecting concentration, and health benefits of phytochemicals found in Daucus carota. Two hundred and fifty-five articles including original research papers, books, and book chapters were analysed, of which one hundred and thirty articles (most relevant to the topic) were selected for writing the review article. The four types of phytochemicals found in carrots, namely phenolics, carotenoids, polyacetylenes, and ascorbic acid, were summarised. These chemicals aid in the risk reduction of cancer and cardiovascular diseases due to their antioxidant, anti-inflammatory, plasma lipid modification, and anti-tumour properties. Numerous factors influence the amount and type of phytochemicals present in carrots. Genotype (colour differences) plays an important role; high contents of α and β-carotene are present in orange carrots, lutein in yellow carrots, lycopene in red carrots, anthocyanins in the root of purple carrots, and phenolic compounds abound in black carrots. Carotenoids range between 3.2 mg/kg and 170 mg/kg, while vitamin C varies from 21 mg/kg to 775 mg/kg between cultivars. Growth temperatures of carrots influence the level of the sugars, carotenoids, and volatile compounds, so that growing in cool conditions results in a higher yield and quality of carrots, while higher temperatures would increase terpene synthesis, resulting in carrots with a bitter taste. It is worthwhile to investigate the cultivation of different genotypes under various environmental conditions to increase levels of phytochemicals and enhance the nutritional value of carrot, along with the valorisation of carrot by-products.
The core objective of the current study was to assess the effect of encapsulation on the viability and stability of probiotic bacteria under simulated gastrointestinal digestion and thermal conditions. Purposely, probiotics were encapsulated with hydrogel matrices (sodium alginate and carrageenan) using encapsulator. Furthermore, developed microbeads were characterized by X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy to elucidate the interaction between hydrogel matrices and probiotics. The viability of probiotics assessed by subjecting to simulated GIT and thermal conditions. Encapsulation exhibited a significant (p< .05) effect on the survival and stability of probiotics. Overall, a decreasing trend in viability of probiotics was observed in all treatments. A rapid log reduction was observed when free probiotic cells were stored at refrigeration temperature compared to encapsulated probiotic bacteria. Likewise, in vitro gastrointestinal assay, only 3 log while in case of non-encapsulated bacteria 6 log reduction was recorded. In short, the results of the viable count in the case of encapsulated cells were above recommended level (10 6 cfu/g) under thermal as well as in GIT conditions.
Phytochemicals are versatile plant secondary metabolites with therapeutic properties. In this review, we explore lemongrass’s phytochemistry and pharmacological potential (Cymbopogon) as well as its impact on gut microbiota. Lemongrass is well-known for its antioxidant, anti-microbial, anti-inflammatory, anti-hypertensive, anti-diabetic, anti-mutagenicity, anxiolytic properties, and for its hypoglycemic and hypolipidemic activities. Therefore, it is widely used in pharmaceuticals, food, feed, and the cosmetics industry. Lemongrass contains phenolic metabolites (including phenolic acids, flavonoids, stilbenes, and lignans), terpenoids, and alkaloids, which are potent bioactive ingredients. Lemongrass is a precious medicinal plant. Furthermore, lemongrass phytochemicals are considered potential agents to improve health by establishing a balanced gut ecosystem. Lemongrass is considered a quintessential food and feed additive at the industrial level, since there are no issues with residue or toxins. Lemongrass powder and essential oils are used to modulate the gut ecosystem by generating anti-microbial, anti-inflammatory, and antioxidant responses, increasing the optimum nutrient absorption in the gut system. This review will further explore lemongrass’s phytochemical, pharmacological, and therapeutic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.