Saat ini, banyak media yang digunakan agar dapat melakukan aktivitas sehari-hari secara daring, baik dalam bidang pendidikan atau ekonomi, terlebih pada masa pandemi covid-19 ini. Salah satunya adalah kelas maya yang diluncurkan oleh Google, yaitu Google Classroom dalam bidang pendidikan dan pemanfaatan sosial media dalam melakukan aktivitas ekonomi. Pandemi covid-19 memaksa kita untuk mengurangi aktivitas yang bersifat tatap muka atau luring. Oleh karena itu pengabdian ini bertujuan untuk meningkatkan pengetahuan masyarakat Kelurahan Jayawaras mengenai covid-19 dan literasi digital, kegiatan ini akan bermanfaat bagi masyarakat dalam menjalani kegiatan sehari-hari dalam masa adaptasi kebiasaan baru. Kegiatan ini dilakukan secara daring dan luring, dimana kegiatan luring dilakukan dengan memperhatikan protokol kesehatan covid-19. Metode yang digunakan dalam penulisan Artikel ini adalah pendekatan Integrasi Relawan Teknologi Informasi dan Komunikasi. Dengan kegiatan pengabdian ini diharapkan masyarakat Kelurahan Jayawaras dapat menjadi masyarakat yang modern yang dapat mengikuti arus perkembangan teknologi.
In Indonesia, Batik is one of the cultural assets in the field of textiles with various styles. There are many types of batik in Indonesia, one of which is Batik Garutan. Batik Garutan has different motifs that show the characteristics of Batik Garutan itself. Therefore, to distinguish the features of Batik Garutan from another batik, a system is needed to classify the types of batik patterns. Classification of batik patterns can be done using image classification. In image classification, there are methods to increase the size and quality of the limited training dataset by performing data augmentation. This study aims to obtain an image classification model by applying data augmentation. The image classification process is carried out using the Deep Learning method with the Convolutional Neural Network algorithm, which is expected to be helpful as a reference for research and can be applied to software development related to image classification. This study generated models from several experiments with different epoch parameters and dataset proportions. A system obtained the investigation with the best performance with a data proportion of 9:1, resulting in an accuracy value of 91 percent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.