Biocomposite is a material that have potential to heal injured bones and teeth due to their biocompatible, non-toxic, non-inflammation, and bioactive properties which can prevent infections that occurs frequently during surgical processes. Biocomposites made of PLA, PCL, and HA from bovine bone as a substitute for metal materials in medical applications have been widely studied. However, there are limited studies on the biocomposites made of PLA, PCL, and HA from green mussel shells. Therefore, this study aims to produce biocomposites from Polylactic Acid (PLA), Polycaprolactone (PCL), and Hydroxyapatite (HA) from green mussel shells and to determine the effect of HA concentration on the mechanical properties and degradation rate of the resulting biocomposite. 80 ml of chloroform was used to dissolve 16 grams of a PLA/PCL mixture with a composition of 80% and 20%. After 30 minutes, the solution was agitated for 30 minutes with a magnetic stirrer at 50°C and 300 rpm. After obtaining a homogenous solution, hydroxyapatite was added in percentages of 5%, 10%, 15%, and 20% of the total weight of the PLA/PCL mixture. The resulting mixture is poured into a glass mold in accordance with ASTM D790. Three-point bending, density, and biodegradable test were performed to investigate the effect of HA content on the mechanical properties and degradation rate of the biocomposite. The results of this study indicate that the mechanical properties of the biocomposite improved with the HA concentration increases. However, the more HA content used, the faster the biocomposite degrades.
Hydroxyapatite is generally utilized in medical fields especially as a substitute to bone and teeth. Hydroxyapatite nanoparticles have been succesfully synthesized from green mussel shells as a source of calcium carbonate by hydrothermal method. The green mussel shells were calcined, hydrated, and undergone carbonation to form Precipitated Calcium Carbonate (PCC). The PCC of shells was then added with (NH4)2HPO4 with the mole ratio of Ca/P = 1.67. Hydrothermal reaction was carried out at 160oC with variations of the holding time (14, 16, and 18 hrs). The formation of hydroxyapatite was characterized using XRD and SEM-EDX. The XRD patterns showed that the products were hydroxyapatite crystals. The morphology of hydroxyapatite observed using SEM showed that the crystal uniformity of hydroxyapatite. The best result was obtained at 18 hrs holding time of hydrothermal because the hydroxyapatite produced has the highest purity without any impurities phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.