Software and symmetric testing methodologies are primarily used in detecting software defects, but these testing methodologies need to be optimized to mitigate the wasting of resources. As mobile applications are becoming more prevalent in recent times, the need to have mobile applications that satisfy software quality through testing cannot be overemphasized. Testing suites and software quality assurance techniques have also become prevalent, which underscores the need to evaluate the efficacy of these tools in the testing of the applications. Mutation testing is one such technique, which is the process of injecting small changes into the software under test (SUT), thereby creating mutants. These mutants are then tested using mutation testing techniques alongside the SUT to determine the effectiveness of test suites through mutation scoring. Although mutation testing is effective, the cost of implementing it, due to the problem of equivalent mutants, is very high. Many research works gave varying solutions to this problem, but none used a standardized dataset. In this research work, we employed a standard mutant dataset tool called MutantBench to generate our data. Subsequently, an Abstract Syntax Tree (AST) was used in conjunction with a tree-based convolutional neural network (TBCNN) as our deep learning model to automate the classification of the equivalent mutants to reduce the cost of mutation testing in software testing of android applications. The result shows that the proposed model produces a good accuracy rate of 94%, as well as other performance metrics such as recall (96%), precision (89%), F1-score (92%), and Matthew’s correlation coefficients (88%) with fewer False Negatives and False Positives during testing, which is significant as it implies that there is a decrease in the risk of misclassification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.