It is a familiar fact that inequalities have become a very popular method using fractional integrals, and that this method has been the driving force behind many studies in recent years. Many forms of inequality have been studied, resulting in the introduction of new trend in inequality theory. The aim of this paper is to use a fuzzy order relation to introduce various types of inequalities. On the fuzzy interval space, this fuzzy order relation is defined level by level. With the help of this relation, firstly, we derive some discrete Jensen and Schur inequalities for convex fuzzy interval-valued functions (convex fuzzy-IVF), and then, we present Hermite–Hadamard inequalities (-inequalities) for convex fuzzy-IVF via fuzzy interval Riemann–Liouville fractional integrals. These outcomes are a generalization of a number of previously known results, and many new outcomes can be deduced as a result of appropriate parameter and real valued function selections. We hope that our fuzzy order relations results can be used to evaluate a number of mathematical problems related to real-world applications.
It is a familiar fact that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models whose data are composed of inaccuracies that may occur from certain kinds of measurements. In interval analysis, both the inclusion relation ⊆ and pseudo order relation ≤p are two different concepts. In this article, by using pseudo order relation, we introduce the new class of nonconvex functions known as LR-p-convex interval-valued functions (LR-p-convex-IVFs). With the help of this relation, we establish a strong relationship between LR-p-convex-IVFs and Hermite-Hadamard type inequalities (HH-type inequalities) via Katugampola fractional integral operator. Moreover, we have shown that our results include a wide class of new and known inequalities for LR-p-convex-IVFs and their variant forms as special cases. Useful examples that demonstrate the applicability of the theory proposed in this study are given. The concepts and techniques of this paper may be a starting point for further research in this area.
In this paper, our aim is to consider the new class of log-convex fuzzy-interval-valued function known as log-s-convex fuzzy-interval-valued functions (log-s-convex fuzzy-IVFs). By this concept, we have introduced Hermite–Hadamard inequalities (HH-inequalities) by means of fuzzy order relation. This fuzzy order relation is defined level-wise through Kulisch–Miranker order relation defined on interval space. Moreover, some new Hermite–Hadamard–Fejér inequalities (HH–Fejér-inequalities) and Jensen’s inequalities via log-s-convex fuzzy-IVFs are also established and verified with the support of useful examples. Some special cases are also discussed which can be viewed as applications of fuzzy-interval HH-inequalities. The concepts and approaches of this paper may be the starting point for further research in this area.
For left and right λ-preinvex interval-valued functions (left and right λ-preinvex IVFs) in interval-valued Riemann operator settings, we create Hermite–Hadamard (H-H) type inequalities in the current study. Additionally, we create Hermite–Hadamard–Fejér (H-H-Fejér)-type inequalities for preinvex functions of the left and right interval-valued type under some mild conditions. Moreover, some exceptional new and classical cases are also obtained. Some useful examples are also presented to prove the validity of the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.