The disposal of steel slag leads to the occupation of large land areas, along with many environmental consequences, due to the release of poisonous substances into the water and soil. The use of steel slag in concrete as a sand-replacement material can assist in reducing its impacts on the environment and can be an alternative source of fine aggregates. This is the very first paper that seeks to experimentally investigate the cumulative effect of steel slag and polypropylene fibers, particularly on the impact resistance of concrete. Various concrete mixes were devised by substituting natural sand with steel slag at volumetric replacement ratios of 0%, 10%, 20%, 30%, and 40%, with and without fibers. Polypropylene fibers of 12 mm length were introduced into the steel slag concrete at 0%, 0.5%, and 1.0% by weight of cement as a reinforcing material. Performance evaluation of each mix through extensive experimental testing indicated that the use of steel slag as partial substitution of natural sand, up to a certain optimum replacement level of 30%, considerably improved the compressive strength, flexural strength, and tensile strength of the concrete by 20.4%, 23.8%, and 17.0%, respectively. Furthermore, the addition of polypropylene fibers to the steel slag concrete played a beneficial role in the improvement of strength characteristics, particularly the flexural strength and final drop weight impact energy, which had a maximum rise of 48.1% and 164%, correspondingly. Moreover, integral structure and analytical analyses have also been performed in this study to validate the experimental findings. The results obtained encourage the use of fiber-reinforced steel slag concrete (FRSLC) as a potential impact-resistant material considering the environmental advantages, with the suggested substitution, of an addition ratio of 30% and 1.0% for steel slag and polypropylene fibers, respectively.
This study investigated the detailed optimization of wheat straw ash (WSA) as a pozzolanic material. Characterization of WSA as pozzolanic materials was carried out according to ASTM C618 and results indicated that WSA calcined at 700 °C for 2 h fulfilled ASTM C618 requirement and results were also confirmed by X-ray diffraction (XRD) analysis of WSA samples. Effect of WSA on setting time, mechanical properties, alkali–silica reaction (ASR), hydration process, and microstructure of cement paste (CP) and concrete was studied. Compressive and flexural strength of concrete mixture containing 14% WSA was 7.5% and 19.5% more as compared to control mixture at 28 days respectively. ASR expansion of mortar prisms and hydration temperature was reduced due to WSA incorporation. XRD and scanning electron microscopy investigations of CP indicated that WSA improved the microstructure of CP and was effective in imparting the pozzolanic characteristics during hydration reaction at 7 and 28 days.
Web openings in reinforced concrete (RC) beams are provided to pass utility pipes and ducts through them. This causes high stresses (with local cracking) around the transverse web openings, which may lead to reduction in ultimate strength and stiffness of RC beams. Internal strengthening with shear reinforcement can increase ultimate strength of the beam with web openings. This paper presents an experimental study which was conducted to investigate load carrying capacity, mid-span deflection and failure modes of beams with web openings. A total of eighteen RC beams were included in the testing programme, which were tested under two-point loading. The beams contained both pre-planned and post-planned web openings. Experimental results showed that ultimate load of the beams decreased from forty-two to sixty-seven percent due to the presence of web openings in the shear zones. Shear strength of the beams with pre-planned web openings increased by thirty-six percent and one-hundred two percent as compared to the reference beam due to the increase of shear reinforcement by one-hundred twenty-two percent and three-hundred three percent, respectively. Similarly, increase in shear capacity up to six percent and fourteen percent was found for the beams with post-planned web openings due to the aforementioned increase in the area of shear reinforcement, respectively. The ultimate load carrying capacity was also compared with the theoretical models. Internal strengthening and pre planned opening were found effective for providing web openings in the beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.