Digital twins hold substantial promise in many applications, but rigorous procedures for assessing their accuracy are essential for their widespread deployment in safety-critical settings. By formulating this task within the framework of causal inference, we show it is not possible to certify that a twin is "correct" using real-world observational data unless potentially tenuous assumptions are made about the data-generating process. To avoid these assumptions, we propose an assessment strategy that instead aims to find cases where the twin is not correct, and present a general-purpose statistical procedure for doing so that may be used across a wide variety of applications and twin models. Our approach yields reliable and actionable information about the twin under only the assumption of an i.i.d. dataset of real-world observations, and in particular remains sound even in the presence of arbitrary unmeasured confounding. We demonstrate the effectiveness of our methodology via a large-scale case study involving sepsis modelling within the Pulse Physiology Engine, which we assess using the MIMIC-III dataset of ICU patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.