The depletion of non-renewable energy sources and negative effects towards the environment push research towards the widespread adoption of renewable energy sources such as solar energy. The main drawback of solar panels is that temperatures above 27°C will result in an efficiency drop of 0.1-0.5%/°C. In previous studies, usage of photovoltaic thermal (PVT) systems was mainly for the purpose of heating water, warming buildings, and drying crops. This research will focus on the usage of a standalone PVT and thermoelectric generator (TEG) system whereby it uses heat extracted from the PVT system for thermoelectric generation. A passive standalone PVT-TEG system design with microencapsulated paraffin wax as a phase change material (PCM) as a heat storage medium was created. The heat stored in the PCM is used as a heat source for thermoelectric generation. To extract the heat from the PV panel, an aluminum heatsink underneath the PV panel is used as a heat absorber to passively extract heat without external power sources. This setup reduces the surface temperature by 22.7°C. Transient thermal analysis and thermoelectric simulation of the system was conducted through Computational Fluid Dynamics (CFD) using ANSYS 2019 software. The error recorded between the experimental and simulation results was 4.2%. This proposed system panel successfully increased the electrical efficiency of the PV panel by approximately 12.8%, where the overall electrical power produced shows a significant increase from 7.7W to 17.7W.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.