It is an attributed fact that magnesium, in normal conditions, behaves as active or anodic material and steel as a noble or cathodic material in a galvanic cell. In the current study, various experiments have been conducted to investigate the electrochemical behavior of magnesium and mild steel galvanic couples in tap water and 0.1M NaHCO3 corrosive environments at different temperatures (40 ℃ to 80 ℃). The potentiodynamic results have confirmed that in tap water, magnesium acts as an anode as it corrodes itself and protects steel surfaces under the influence of galvanic action at selected temperatures. However, magnesium became passive under 0.1M NaHCO3 making steel anodic, which deteriorates aggressively at higher temperatures in 0.1M NaHCO3. The polarity reversal phenomenon was also observed in the magnesium-steel couple when exposed to this environment. The microstructural examination has shown that passivation occurred due to the formation of an oxide layer that grew towards the steel side in the galvanic couple as the temperature increased. Thus, the study revealed that the magnesium would be more damaging to steel in a NaHCO3 environment if utilized in the temperature range of 60 ℃to 80 ℃.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.