These days human beings are facing many environmental challenges due to frequently occurring drought hazards. It may have an effect on the country's environment, the community, and industries. Several adverse impacts of drought hazard are continued in Pakistan, including other hazards. However, early measurement and detection of drought can provide guidance to water resources management for employing drought mitigation policies. In this paper, we used a multilayer perceptron neural network (MLPNN) algorithm for drought forecasting. We applied and tested MLPNN algorithm on monthly time series data of Standardized Precipitation Evapotranspiration Index (SPEI) for seventeen climatological stations located in Northern Area and KPK (Pakistan). We found that MLPNN has potential capability for SPEI drought forecasting based on performance measures (i.e., Mean Average Error (MAE), the coefficient of correlation ( ), and Root Mean Square Error (RMSE)). Water resources and management planner can take necessary action in advance (e.g., in water scarcity areas) by using MLPNN model as part of their decision-making.
Accurate prediction of hydrological processes is key for optimal allocation of water resources. In this study, two novel hybrid models are developed to improve the prediction precision of hydrological time series data based on the principal of three stages as denoising, decomposition, and decomposed component prediction and summation. The proposed architecture is applied on daily rivers inflow time series data of Indus Basin System. The performances of the proposed models are compared with traditional single-stage model (without denoised and decomposed), the hybrid two-stage model (with denoised), and existing three-stage hybrid model (with denoised and decomposition). Three evaluation measures are used to assess the prediction accuracy of all models such as Mean Relative Error (MRE), Mean Absolute Error (MAE), and Mean Square Error (MSE). The proposed, three-stage hybrid models have shown improvement in prediction accuracy with minimum MRE, MAE, and MSE for all case studies as compared to other existing one-stage and two-stage models. In summary, the accuracy of prediction is improved by reducing the complexity of hydrological time series data by incorporating the denoising and decomposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.