Ignition delay times (IDT) for stoichiometric propane (C3H8) diluted with nitrogen were measured in a shock tube facility under reflected shock wave conditions at pressures ranging from 1 to 10 atm and temperatures between 850 and 1500 K. The experiments were limited to a maximum pressure of 10 atm due to the facility’s constraints. In addition, numerical simulations were conducted using several detailed kinetic mechanisms at pressures from 1 to 30 atm and three equivalence ratios (φ = 0.5, 1, and 2) to provide comparative insights. The results indicated that IDT decreases as pressure increases, with a more significant reduction observed between 1 and 10 atm compared to 10 to 30 atm. While most models exhibited similar trends and minimal discrepancies, the GRI Mech 3.0 mechanism demonstrated a slower prediction of ignition delay times at temperatures below 1250 K. In contrast, the POLIMI model exhibited a relatively faster prediction at temperatures above 1250 K, with the deviation between the two models becoming more pronounced as pressure increased. A comparative analysis revealed that the experimental predictions of propane autoignition behavior were in good agreement with the results obtained using the ARAMCO 3.0 mechanism. To further understand the chemistry governing the autoignition process of C3H8, a sensitivity analysis was performed for a stoichiometric mixture at three distinct temperatures (850 K, 1200 K, and 1550 K).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.