<div>Memristor is dubbed as the fourth fundamental electrical component which works primarily as a non-volatile memory element. Memristors can also be used to construct logic gates, and Memristor Ratioed Logic (MRL) is one of these structures. The higher area efficiency and CMOS architecture compatibility of MRL gates have lead researchers to pay attention to its use in digital logic architecture. In this work, binary MRL is integrated with Complementary Metal-Oxide Semiconductor(CMOS) logic elements to develop building blocks of an Arithmetic Logic Unit (ALU). The proposed 1-bit ALU is simulated using LTSpice, which allows the versatility of changing the parameters as per the model used. This work designs and analyses an optimized cascadable 1-bit ALU with with voltage level based binary logic state via simulation. The proposed circuit shows improvement in transistor count and delay over benchmark circuits.</div>
<div>Memristor is dubbed as the fourth fundamental electrical component which works primarily as a non-volatile memory element. Memristors can also be used to construct logic gates, and Memristor Ratioed Logic (MRL) is one of these structures. The higher area efficiency and CMOS architecture compatibility of MRL gates have lead researchers to pay attention to its use in digital logic architecture. In this work, binary MRL is integrated with Complementary Metal-Oxide Semiconductor(CMOS) logic elements to develop building blocks of an Arithmetic Logic Unit (ALU). The proposed 1-bit ALU is simulated using LTSpice, which allows the versatility of changing the parameters as per the model used. This work designs and analyses an optimized cascadable 1-bit ALU with with voltage level based binary logic state via simulation. The proposed circuit shows improvement in transistor count and delay over benchmark circuits.</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.