Obstructive sleep apnoea (OSA) is a sleep disorder with long-term consequences. Long-term effects include sleep-related issues and cardiovascular diseases. OSA is often diagnosed with an overnight sleep test called a polysomnogram. Monitoring can be costly with long wait times for diagnosis. In this paper, a novel OSA screening framework and prototype phone application are introduced. A database of 856 patients that underwent at-home polygraphy was collected. Features were derived from audio, actigraphy, photoplethysmography (PPG), and demographics, and used as the inputs of a support vector machine (SVM) classifier. The SVM was trained on 735 patients and tested on 121 patients. Classification on the test set had an accuracy of up to 92.2% when classifying subjects as having moderate or severe OSA versus being healthy or a snorer based on the clinicians' diagnoses. The signal processing and machine learning algorithms were ported to Java and integrated into the phone application-SleepAp. SleepAp records the body position, audio, actigraphy and PPG signals, and implements the clinically validated STOP-BANG questionnaire. It derives features from the signals and classifies the user as having OSA or not using the SVM trained on the clinical database. The resulting software could provide a new, easy-to-use, low-cost, and widely available modality for OSA screening.
<p>This paper aims to produce comparison among four competing Machine Learning classifiers including a boosting algorithm when fitted on MNIST dataset to predict 0-Image. Accuracy (ACC) of Support Vector Machine (SVM), Stochastic Gradient Descent (SGD), AdaBoost and Random Forest models are evaluated through 3-fold and 10-fold Cross Validation. Further, performance is measured through precision (PREC), F1-score (F1), recall (REC), PR Curve and ROC. <br>
</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.