We propose an adaptation of a convolutional neural network (CNN) scheme proposed for segmenting brain lesions with considerable mass-effect, to segment white matter hyperintensities (WMH) characteristic of brains with none or mild vascular pathology in routine clinical brain magnetic resonance images (MRI). This is a rather difficult segmentation problem because of the small area (i.e., volume) of the WMH and their similarity to non-pathological brain tissue. We investigate the effectiveness of the 2D CNN scheme by comparing its performance against those obtained from another deep learning approach: Deep Boltzmann Machine (DBM), two conventional machine learning approaches: Support Vector Machine (SVM) and Random Forest (RF), and a public toolbox: Lesion Segmentation Tool (LST), all reported to be useful for segmenting WMH in MRI. We also introduce a way to incorporate spatial information in convolution level of CNN for WMH segmentation named global spatial information (GSI). Analysis of covariance corroborated known associations between WMH progression, as assessed by all methods evaluated, and demographic and clinical data. Deep learning algorithms outperform conventional machine learning algorithms by excluding MRI artefacts and pathologies that appear similar to WMH. Our proposed approach of incorporating GSI also successfully helped CNN to achieve better automatic WMH segmentation regardless of network's settings tested. The mean Dice Similarity Coefficient (DSC) values for LST-LGA, SVM, RF, DBM, CNN and CNN-GSI were 0.2963, 0.1194, 0.1633, 0.3264, 0.5359 and 5389 respectively.
We present the application of limited one-time sampling irregularity map (LOTS-IM): a fully automatic unsupervised approach to extract brain tissue irregularities in magnetic resonance images (MRI), for quantitatively assessing white matter hyperintensities (WMH) of presumed vascular origin, and multiple sclerosis (MS) lesions and their progression. LOTS-IM generates an irregularity map (IM) that represents all voxels as irregularity values with respect to the ones considered "normal". Unlike probability values, IM represents both regular and irregular regions in the brain based on the original MRI's texture information. We evaluated and compared the use of IM for WMH and MS lesions segmentation on T2-FLAIR MRI with the stateof-the-art unsupervised lesions' segmentation method, Lesion Growth Algorithm from the public toolbox Lesion Segmentation Toolbox (LST-LGA), with several well established conventional supervised machine learning schemes and with state-of-the-art supervised deep learning methods for WMH segmentation. In our experiments, LOTS-IM outperformed unsupervised method LST-LGA on WMH segmentation, both in performance and processing speed, thanks to the limited one-time sampling scheme and its implementation on GPU. Our method also outperformed supervised conventional machine learning algorithms (i.e., support vector machine (SVM) and random forest (RF)) and deep learning algorithms (i.e., deep Boltzmann machine (DBM) and convolutional encoder network (CEN)), while yielding comparable results to the convolutional neural network schemes that rank top of the algorithms developed up to date for this purpose (i.e., UResNet and UNet). LOTS-IM also performed well on MS lesions segmentation, performing similar to LST-LGA. On the other hand, the high sensitivity of IM on depicting signal change deems suitable for assessing MS progression, although care must be taken with signal changes not reflective of a true pathology.
Predicting disease progression always involves a high degree of uncertainty. White matter hyperintensities (WMHs) are the main neuroradiological feature of small vessel disease and a common finding in brain scans of dementia patients and older adults. In predicting their progression previous studies have identified two main challenges: 1) uncertainty in predicting the areas/boundaries of shrinking and growing WMHs and 2) uncertainty in the estimation of future WMHs volume. This study proposes the use of a probabilistic deep learning model called Probabilistic U-Net trained with adversarial loss for capturing and modelling spatial uncertainty in brain MR images. This study also proposes an evaluation procedure named volume interval estimation (VIE) for improving the interpretation of and confidence in the predictive deep learning model. Our experiments show that the Probabilistic U-Net with adversarial training improved the performance of non-probabilistic U-Net in Dice similarity coefficient for predicting the areas of shrinking WMHs, growing WMHs, stable WMHs, and their average by up to 3.35%, 2.94%, 0.47%, and 1.03% respectively. It also improved the volume estimation by 11.84% in the "Correct Prediction in Estimated Volume Interval" metric as per the newly proposed VIE evaluation procedure.
In the wake of the use of deep learning algorithms in medical image analysis, we compared performance of deep learning algorithms, namely the deep Boltzmann machine (DBM), convolutional encoder network (CEN) and patch-wise convolutional neural network (patch-CNN), with two conventional machine learning schemes: Support vector machine (SVM) and random forest (RF), for white matter hyperintensities (WMH) segmentation on brain MRI with mild or no vascular pathology. We also compared all these approaches with a method in the Lesion Segmentation Tool public toolbox named lesion growth algorithm (LGA). We used a dataset comprised of 60 MRI data from 20 subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, each scanned once every year during three consecutive years. Spatial agreement score, receiver operating characteristic and precision-recall performance curves, volume disagreement score, agreement with intra-/inter-observer reliability measurements and visual evaluation were used to find the best configuration of each learning algorithm for WMH segmentation. By using optimum threshold values for the probabilistic output from each algorithm to produce binary masks of WMH, we found that SVM and RF produced good results for medium to very large WMH burden but deep learning algorithms performed generally better than conventional ones in most evaluations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.