The self-assembly of block copolymers is often rationalized by structure and microphase separation; pathways that diverge from this parameter space may provide new mechanisms of polymer assembly. Here, we show that the sequence and length of single-stranded DNA directly influence the self-assembly of sequence-defined DNA block copolymers. While increasing the length of DNA led to predictable changes in selfassembly, changing only the sequence of DNA produced three distinct structures: spherical micelles (spherical nucleic acids, SNAs) from flexible poly(thymine) DNA, fibers from semirigid mixed-sequence DNA, and networked superstructures from rigid poly(adenine) DNA. The secondary structure of poly(adenine) DNA strands drives a temperature-dependent polymerization and assembly mechanism: copolymers stored in an SNA reservoir form fibers after thermal activation, which then aggregate upon cooling to form interwoven networks. DNA is often used as a programming code that aids in nanostructure addressability and function. Here, we show that the inherent physical and chemical properties of single-stranded DNA sequences also make them an ideal material to direct self-assembled morphologies and select for new methods of supramolecular polymerization.
This paper reports the efficient synthesis of the first class of polyisobutylene(PIB)-supported palladium-PEPPSI precatalyst (PEPPSI = pyridine-enhanced precatalyst preparation, stabilization, and initiation). The new complexes are employed in Buchwald-Hartwig amination of aryl chlorides and are found to be reasonably active in the titled cross-coupling reaction. The supported catalysts are tested in polar (1,4-dioxane and 1,2-dimethoxyethane) as well as in aliphatic reaction media (toluene and n-heptane) and display superior activity in the highly lipophilic solvent (n-heptane). The catalytic efficacy of PIB-Pd-PEPPSI precatalyst is measured to be comparable to its nonsupported analog. Pd-leaching is determined by inductively coupled plasma mass spectrometry (ICP-MS) after a simple liquid/liquid extraction and is found to be 2 ppb in the product phase, translating into a recovery of ≈99.8% of the palladium.
Two‐dimensional (2D) assemblies of water‐soluble block copolymers have been limited by a dearth of systematic studies that relate polymer structure to pathway mechanism and supramolecular morphology. Here, we employ sequence‐defined triblock DNA amphiphiles for the supramolecular polymerization of free‐standing DNA nanosheets in water. Our systematic modulation of amphiphile sequence shows the alkyl chain core forming a cell membrane‐like structure and the distal π‐stacking chromophore block folding back to interact with the hydrophilic DNA block on the nanosheet surface. This interaction is crucial to sheet formation, marked by a chiral “signature”, and sensitive to DNA sequence, where nanosheets form with a mixed sequence, but not with a homogeneous poly(thymine) sequence. This work opens the possibility of forming well‐ordered, bilayer‐like assemblies using a single DNA amphiphile for applications in cell sensing, nucleic acid therapeutic delivery and enzyme arrays.
Two-dimensional (2D) assemblies of watersoluble block copolymers have been limited by a dearth of systematic studies that relate polymer structure to pathway mechanism and supramolecular morphology.Here, we employ sequence-defined triblock DNA amphiphiles for the supramolecular polymerization of free-standing DNA nanosheets in water. Our systematic modulation of amphiphile sequence shows the alkyl chain core forming a cell membrane-like structure and the distal π-stacking chromophore block folding back to interact with the hydrophilic DNA block on the nanosheet surface. This interaction is crucial to sheet formation, marked by a chiral "signature", and sensitive to DNA sequence, where nanosheets form with a mixed sequence, but not with a homogeneous poly(thymine) sequence. This work opens the possibility of forming well-ordered, bilayer-like assemblies using a single DNA amphiphile for applications in cell sensing, nucleic acid therapeutic delivery and enzyme arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.