Present article reads three dimensional flow analysis of incompressible viscous hybrid nanofluid in a rotating frame. Ethylene glycol is used as a base liquid while nanoparticles are of copper and silver. Fluid is bounded between two parallel surfaces in which the lower surface stretches linearly. Fluid is conducting hence uniform magnetic field is applied. Effects of non-linear thermal radiation, Joule heating and viscous dissipation are entertained. Interesting quantities namely surface drag force and Nusselt number are discussed. Rate of entropy generation is examined. Bvp4c numerical scheme is used for the solution of transformed O.D.Es. Results regarding various flow parameters are obtained via bvp4c technique in MATLAB Software version 2019, and displayed through different plots. Our obtained results presents that velocity field decreases with respect to higher values of magnetic parameter, Reynolds number and rotation parameter. It is also observed that the temperature field boots subject to radiation parameter. Results are compared with Ishak et al. (Nonlinear Anal R World Appl 10:2909–2913, 2009) and found very good agreement with them. This agreement shows that the results are 99.99% match with each other.
Described in this article is a numerical study on the Jeffery-Hamel flow of hybrid fluid consisting of Copper and Graphene oxide nanoparticles. The nanofluid are considered as single-phase fluid and their heat transport performance is also investigated. The flow is carried out in a convergent/divergent channel where the channel walls can stretch or shrink. Additionally, the impact of magnetic field on flow and heat transfer analysis are examined. The flow governing equations are modeled under the Boussinesq approximations using cylindrical polar coordinates. These partial differential equations have been changed into system of ordinary differential equations by means of dimensionless formulation. Later, the numerical solution of governing problem is obtained with a developed code in MATLAB software which employs boundary-value problem solver (bvp4c). The effects of eminent flow parameters on skin friction coefficient, Nusselt number, velocity, and temperature distributions in case of both convergent and divergent channels are plotted and investigated. It is concluded from current analysis that the local skin friction coefficient significantly reduces with higher magnetic parameter. We further observed that the fluid velocity increases with increasing values of Reynolds number in case of convergent channel, while an inverse is noted for divergent channel. The present review indicates that the rate of heat transfer has been enhanced due to greater Prandtl number.
KeywordsJeffery-Hamel flow • Hybrid nanofluid • Convergent/divergent channel • Heat transfer • Magnetic field • Numerical solution Abbreviations u Velocity component in radial direction (r, , z) Cylindrical polar coordinates * Hashim
The current work examines the MHD convective stagnation point flow of nanofluid over a stretched surface. A uniform magnetic field is applied in a transverse direction. Darcy–Forchheimer’s relation is accounted to demonstrate the flow nature in a permeable medium. Cattaneo–Christov heat and mass flux expressions are incorporated in the modeling. Velocity slip conditions are taken. The non-dimensional velocity, temperature and concentration field are analyzed via pertinent flow parameters like permeability parameter, Buoyancy or mixed convection variable, magnetic parameter, Prandtl number and surface thickness parameter. Results are tabulated for the surface drag force. The Homotopic technique is utilized for the series solution of differential system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.