This paper investigates the effect of steel fibre and alkaline-resistance glass fibre lightweight foamed concrete with fly ash inclusion towards mechanical and durability properties. The lightweight foamed concrete (LFC) with a density of 1000 kg/m3with constant water sand ratio of 1: 1:5 and water cement ratio of 0.45 was cast and tested. Steel and alkaline-resistance glass fibres were used as additives and 30% of cement was replaced by fly ash. Detail experiments were setup to study the behaviour and reaction of additives which is expected to give different results on mechanical and durability properties of LFC. Compared to AR-glass fibre, steel fibre has greater contribution in terms of mechanical properties. SFLFC resulted as the most effective approach for compressive, flexural, tensile split and water absorption with strength 6.13 N/mm2, 1.96 N/mm2, 1.52 N/mm2and lowest water absorption at 6.5% respectively. On the other hand, AR-glass fibre is better in controlling drying shrinkage which leads to controlling the cracking at early age. Fly ash does not change the mechanical properties and durability due to unprocessed stage to its finer forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.