BackgroundCardiac arrest (CA) has been a leading cause of death for many decades. Despite years of research, we still do not understand how each organ responds to the reintroduction of blood flow after prolonged CA. Following changes in metabolites of individual organs after CA and resuscitation gives context to the efficiency and limitations of current resuscitation protocols.Methods and ResultsAdult male Sprague–Dawley rats were arbitrarily assigned into 3 groups: control, 20 minutes of CA, or 20 minutes of CA followed by 30 minutes of cardiopulmonary bypass resuscitation. The rats were euthanized by decapitation to harvest brain, heart, kidney, and liver tissues. The obtained tissue samples were analyzed by ultra‐high‐performance liquid chromatography–high‐accuracy mass spectrometry for comprehensive metabolomics evaluation. After resuscitation, the brain showed decreased glycolysis metabolites and fatty acids and increased amino acids compared with control. Similarly, the heart displayed alterations mostly in amino acids. The kidney showed decreased amino acid and fatty acid pools with severely increased tricarboxylic acid cycle metabolites following resuscitation, while the liver showed minimal alterations with slight changes in the lipid pool. Each tissue has a distinct pattern of metabolite changes after ischemia/reperfusion. Furthermore, resuscitation worsens the metabolic dysregulation in the brain and kidney, while it normalizes metabolism in the heart.ConclusionsDeveloping metabolic profiles using a global metabolome analysis identifies the variable nature of metabolites in individual organs after CA and reperfusion, establishing a stark contrast between the normalized heart and liver and the exacerbated brain and kidney, only after the reestablishment of blood circulation.
Cardiac arrest (CA) results in global ischemia-reperfusion injury damaging tissues in the whole body. The landscape of therapeutic interventions in resuscitation medicine has evolved from focusing solely on achieving return of circulation to now exploring options to mitigate brain injury and preserve brain function after CA. CA pathology includes mitochondrial damage and endoplasmic reticulum stress response, increased generation of reactive oxygen species, neuroinflammation, and neuronal excitotoxic death. Current non-pharmacologic therapies, such as therapeutic hypothermia and extracorporeal cardiopulmonary resuscitation, have shown benefits in protecting against ischemic brain injury and improving neurological outcomes post-CA, yet their application is difficult to institute ubiquitously. The current preclinical pharmacopeia to address CA and the resulting brain injury utilizes drugs that often target singular pathways and have been difficult to translate from the bench to the clinic. Furthermore, the limited combination therapies that have been attempted have shown mixed effects in conferring neuroprotection and improving survival post-CA. The global scale of CA damage and its resultant brain injury necessitates the future of CA interventions to simultaneously target multiple pathways and alleviate the hemodynamic, mitochondrial, metabolic, oxidative, and inflammatory processes in the brain. This narrative review seeks to highlight the current field of post-CA neuroprotective pharmaceutical therapies, both singular and combination, and discuss the use of an extensive multi-drug cocktail therapy as a novel approach to treat CA-mediated dysregulation of multiple pathways, enhancing survival, and neuroprotection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.