The presence of benzoxazole moiety in most of the heterocyclic compounds is well reported. The present literature review mainly highlights the novel synthetic transformation and describes the biological potential of most of the heterocyclic compounds by virtue of presence of benzoxazole framework. Most of the researchers have revealed that benzoxazole derivatives exhibit significant antibacterial, anti-inflammatory, antifungal, anticancer, analgesic, antiviral, anti-tubercular, and anthelmintic activities. Benzoxazole moieties also act as tyrosinase inhibitor and cholesterol ester transfer protein inhibitor. This literature review may provide an opportunity to the chemists to design new derivatives of benzoxazole that proved to be the successful agent in view of safety, effectiveness, and efficacy.
Compost is considered to be superior fertilizer for soil quality and productivity, and is commonly used with chemical fertilizer. The optimal mixed ratio of compost with chemical fertilizer and the best application time is necessary to know for sustainable agriculture practices and management. Compared to the control treatment, this study comprehensively evaluated the effects of four mixed ratios of compost with chemical fertilizer, two nitrogen application times of chemical fertilizer, and their interaction on the soil properties, plant traits, yield, and quality of tomato plants. The soil properties, plant traits, and yield of tomato with all compost-mixed fertilizers performed better than the treatment without fertilizer. Furthermore, the amounts of available nitrogen, phosphorus, organic matter, plant weight, and yield in a 30% chemical fertilizer + 70% compost treatments (CF30) were even better than those with pure chemical fertilizer (CF100). No significant effect of nitrogen application time and its interaction with the mixed ratio treatment was detected, and the quality of fruit remained consistent among treatments. This study demonstrated a suitable practical application method for cow manure compost as a nutrient source in tomato crop production under silty loam soil.
Agricultural production is under threat due to climate change in food insecure regions, especially in Asian countries. Various climate-driven extremes, i.e., drought, heat waves, erratic and intense rainfall patterns, storms, floods, and emerging insect pests have adversely affected the livelihood of the farmers. Future climatic predictions showed a significant increase in temperature, and erratic rainfall with higher intensity while variability exists in climatic patterns for climate extremes prediction. For mid-century (2040–2069), it is projected that there will be a rise of 2.8°C in maximum temperature and a 2.2°C in minimum temperature in Pakistan. To respond to the adverse effects of climate change scenarios, there is a need to optimize the climate-smart and resilient agricultural practices and technology for sustainable productivity. Therefore, a case study was carried out to quantify climate change effects on rice and wheat crops and to develop adaptation strategies for the rice-wheat cropping system during the mid-century (2040–2069) as these two crops have significant contributions to food production. For the quantification of adverse impacts of climate change in farmer fields, a multidisciplinary approach consisted of five climate models (GCMs), two crop models (DSSAT and APSIM) and an economic model [Trade-off Analysis, Minimum Data Model Approach (TOAMD)] was used in this case study. DSSAT predicted that there would be a yield reduction of 15.2% in rice and 14.1% in wheat and APSIM showed that there would be a yield reduction of 17.2% in rice and 12% in wheat. Adaptation technology, by modification in crop management like sowing time and density, nitrogen, and irrigation application have the potential to enhance the overall productivity and profitability of the rice-wheat cropping system under climate change scenarios. Moreover, this paper reviews current literature regarding adverse climate change impacts on agricultural productivity, associated main issues, challenges, and opportunities for sustainable productivity of agriculture to ensure food security in Asia. Flowing opportunities such as altering sowing time and planting density of crops, crop rotation with legumes, agroforestry, mixed livestock systems, climate resilient plants, livestock and fish breeds, farming of monogastric livestock, early warning systems and decision support systems, carbon sequestration, climate, water, energy, and soil smart technologies, and promotion of biodiversity have the potential to reduce the negative effects of climate change.
The results suggest that the application of bacterially impregnated DAP and urea is highly effective for improving growth, yield and FUE of wheat. © 2017 Society of Chemical Industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.